
CS303E: Elements of Computers and Programming

Repitition with Loops

Mike Scott

Department of Computer Science

University of Texas at Austin

Adapted from
Professor Bill Young's Slides

Last updated: May 30, 2024

CS303E Slideset 4: 2 Loops

Repetitive Activity

Often we need to do some (program) activity numerous times:

Using Loops

So we might as well use cleverness to do it.

That’s what loops are for.

It doesn’t have to be the exact same thing over and over.

And this is how we really harness the power of a computer that

can perform tens of billions (or more) computations per second!

CS303E Slideset 4: 4 Loops

While Loop

The majority of programming

languages include syntax to repeat

operations.

while loop is one option. General form:

while condition:
statement(s)

Meaning: as long as the condition is

true when checked, execute the

statements.

As with conditionals (if/elif/else), all of

the statements in the body of the

loop must be indented the

same amount.

CS303E Slideset 4: 5 Loops

While Loop

In file not_throw_airplanes.py:

What would happen if we forgot the i += 1?

CS303E Slideset 4: 6 Loops

While Loop Example: Test Primality

An integer is prime if it is greater

than 1 and has no positive integer

divisors except 1 and itself.

To test whether an arbitrary integer n

is prime, see if any number in
[2 . . . n-1], divides it with no remainder

You couldn’t do that in straight line code without knowing n in

advance. Why not?

Even then it would be really tedious if n is very large.

CS303E Slideset 4: 7 Loops

is_prime_1 Loop Example

is_prime_1.py

CS303E Slideset 4: 8 Loops

is_prime_1 Loop
Example

It works, though it’s pretty inefficient. If a number is prime, we

test every possible divisor in [2 . . . n-1].

We don’t actually need the special test for 2.

Think about why that is.

If n is not prime, it will have a divisor less than or equal to √n.

There’s no need to test any even divisor except 2.

The second example took ~24 seconds to complete on my laptop.

CS303E Slideset 4: 9 Loops

A Better Version: is_prime_2.py

CS303E Slideset 4: 10 Loops

The Better is_prime_2 Version

is_prime_1 does 176,970,202 divisions to discover

that 176_970_203 is prime.

is_prime_2 does "only” 13,302.

Took much less than a second to complete.

Computer scientists and software developers spend a

lot of time trying to improve the efficiency of their

programs and algorithms.

Measurably reduce the number of computations.

CS303E Slideset 4: 11 Loops

Example While Loop: Approximate Square Root

You could approximate the square root of

a positive integer as follows: square_root.py

CS303E Slideset 4: 12 Loops

Running the Example

Notice that the last one isn’t quite right. The square root of 100 is

exactly 10.0. Foiled again by the approximate nature of floating

point numbers and floating point arithmetic.

CS303E Slideset 4: 13 Loops

More efficient way of calculating square root?

Newton's method for approximating square roots adapted

from the Dr. Math website
The goal is to find the square root of a number. Let's call it num

1. Choose a rough approximation of the square root of num, call it

approx.

How to choose?

2. Divide num by approx and then average the quotient with approx,

in other words we want to evaluate the

expression ((num/approx) + approx) / 2

3. How close are we? In programming we would store the result of the

expression back into the variable approx.

4. How do you know if you have the right answer?

CS303E Slideset 4: 14 Loops

For Loop

In a for loop, you typically know how many times you’ll

execute.

General form:

for < var> in < sequence>:
<statement(s)>

Meaning: assign each element of

sequence in turn to var and execute

the statements.

As usual, all of the statements in

the body must be indented the

same amount.

CS303E Slideset 4: 15 Loops

What’s a Sequence?

A Python sequence holds multiple items stored one after another.

>>> seq = [2 , 3 , 5 , 7 , 11 , 1 3] # a l i s t

The range function is a good way to generate a sequence.

range(a, b) : denotes the sequence a , a+1, . . . , b-1.

range(b) : is the same as range(0, b).

range(a, b , c) : generates a , a+c, a+2c, , b’, where

b’ is the last value < b.

CS303E Slideset 4: 16 Loops

Range Examples

>>> f or i i n r ange (3 , 6) : pr i nt (i , end=" ")
. . .
3 4 5
>>> f or i i n r ange (3) : pr i nt (i , end=" ")
. . .
0 1 2
>>> for i in range (0 , 11 , 3) : p r i n t (i , end =" ")

. . .
0 3 6 9
>>> for i in range (11 , 0 , - 3) : p r i n t (i , end =" ")
. . .
11 8 5 2
>>>

CS303E Slideset 4: 17 Loops

For Loop Example

Suppose you want to print a table of the powers of

a given base up to basen. In file powers_of.py:

CS303E Slideset 4: 18 Loops

For Loop Example

CS303E Slideset 4: 19 Loops

Nested Loops

The body of while loops and for loops contain

any kind of statements, including other loops.

Suppose we want to compute and print out the BMI value

for heights from 4' 6" (4 feet, 6 inches = 54 inches) to 6' 10"

(82 inches) going up by 2 inches each time

AND weights from 85 to 350 pounds, going up by 5 pounds?

We could then take that data and create a visual graph for

quick look up.

It is arbitrary whether the outer loop is height or weight

CS303E Slideset 4: 20 Loops

Print BMI for various heights and weights

