Topic Number 8 Algorithm Analysis

Is This Algorithm Fast?

- Problem: given a problem, how fast does this code solve that problem?
- Could try to measure the time it takes, but that is subject to lots of errors
- multitasking operating system
- speed of computer
- language solution is written in

Attendance Question 1

- "My program finds all the primes between 2 and $1,000,000,000$ in 1.37 seconds."
- how good is this solution?
A. Good
B. Bad
C. It depends

Grading Algorithms

- What we need is some way to grade algorithms and their representation via computer programs for efficiency
- both time and space efficiency are concerns
- are examples simply deal with time, not space
- The grades used to characterize the algorithm and code should be independent of platform, language, and compiler
- We will look at Java examples as opposed to pseudocode algorithms

Big O

- The most common method and notation for discussing the execution time of algorithms is "Big O"
- Big O is the asymptotic execution time of the algorithm
- Big O is an upper bounds
- It is a mathematical tool
- Hide a lot of unimportant details by assigning a simple grade (function) to algorithms

Actual vs. Big O

- N is the size of the data set.
- The functions do not include less dominant terms and do not include any coefficients.
- $4 \mathrm{~N}^{2}+10 \mathrm{~N}-100$ is not a valid $\mathrm{F}(\mathrm{N})$.
- It would simply be $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- It is possible to have two independent variables in the Big O function.
- example $\mathrm{O}(\mathrm{M}+\log \mathrm{N})$
$-M$ and N are sizes of two different, but interacting data sets

Big O Functions

Typical Big O Functions - "Grades"

Function	Common Name
$N!$	factorial
2^{N}	Exponential
$N^{d}, d>3$	Polynomial
N^{3}	Cubic
N^{2}	Quadratic
$N \sqrt{N}$	N Square root N
$N \log N$	N log N
N	Linear
\sqrt{N}	Root $-n$
$\log N$	Logarithmic
1	Constant

Formal Definition of Big O

- $T(N)$ is $O(F(N)$) if there are positive constants c and N_{0} such that $T(N) \leq c F(N)$ when $\mathrm{N} \geq \mathrm{N}_{0}$
$-N$ is the size of the data set the algorithm works on
$-T(N)$ is a function that characterizes the actual running time of the algorithm
$-F(N)$ is a function that characterizes an upper bounds on $T(N)$. It is a limit on the running time of the algorithm. (The typical Big functions table)
-c and N_{0} are constants

Yuck

- How do you apply the definition?
- Hard to measure time without running programs and that is full of inaccuracies
- Amount of time to complete should be directly proportional to the number of statements executed for a given amount of data
- Count up statements in a program or method or algorithm as a function of the amount of data
- This is one technique
- Traditionally the amount of data is signified by the variable N

What it Means

- $\mathrm{T}(\mathrm{N})$ is the actual growth rate of the algorithm
- can be equated to the number of executable statements in a program or chunk of code
- $\mathrm{F}(\mathrm{N})$ is the function that bounds the growth rate
- may be upper or lower bound
- T(N) may not necessarily equal $F(N)$
- constants and lesser terms ignored because it is a bounding function

Counting Statements in Code

- So what constitutes a statement?
- Can't I rewrite code and get a different answer, that is a different number of statements?
- Yes, but the beauty of Big O is, in the end you get the same answer
- remember, it is a simplification

Assumptions in For Counting Statements

- Once found accessing the value of a primitive is constant time. This is one statement:
$x=y ; / / o n e ~ s t a t e m e n t$
- mathematical operations and comparisons in boolean expressions are all constant time.

$$
x=y * 5+z \% 3 ; / / \text { one statement }
$$

- if statement constant time if test and maximum time for each alternative are constants
if(iMySuit == DIAMONDS || iMySuit == HEARTS)
return RED;
else
return BLACK;
// 2 statements (boolean expression + 1 return)

Attendances Question 3

- What is output by the following code?
int total $=0$;
// assume limit is an int $>=0$
for (int $i=0 ; i<l i m i t ; i++)$
total += 5;
System.out.println(total);
A. 0
B. limit
C. limit * 5
D. limit * limit
E. limit 5

Counting Statements in Loops Attendenance Question 2

- Counting statements in loops often requires a bit of informal mathematical induction
-What is output by the following code?
int total $=0$;
for (int $i=0 ; i<2 ; i++)$
total $+=5$;
System.out.println(total);
A. 2
B. 5
C. 10
D. 15
E. 20

Counting Statements

 in Nested LoopsAttendance Question 4

- What is output by the following code?

```
int total = 0;
for(int i = 0; i < 2; i++)
        for(int j = 0; j < 2; j++)
            total += 5;
System.out.println( total );
```

A. 0
B. 10
C. 20
D. 30
E. 40

Attendance Question 5

- What is output by the following code?
int total $=0$;
// assume limit is an int >= 0
for(int i = 0; i < limit; i++)
for(int j $=0 ; j<l i m i t ; ~ j++)$
total += 5;
System.out.println(total);
A. 5
B. limit * limit
C. limit * limit * 5
D. 0
E. limit 5

Counting Up Statements

- int result = 0; 1 time
- int i = 0; 1 time
, i < values.length; N + 1 times
- i++ N times
- result += values[i]; N times
- return total; 1 time
- $T(N)=3 N+4$
- $F(N)=N$
- $\mathrm{Big} \mathrm{O}=\mathrm{O}(\mathrm{N})$
vertical axis: time for algorithm to complete. (approximate with number of executable statements)

horizontal axis: N, number of elements in data set

Attendance Question 6

- Which of the following is true?
A. Method total is $\mathrm{O}(\mathrm{N})$
B. Method total is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
C. Method total is O(N!)
D. Method total is $\mathrm{O}\left(\mathrm{N}^{\mathrm{N}}\right)$
E. All of the above are true

It is Not Just Counting Loops

```
// assume mat is a 2d array of booleans
// assume mat is square with N rows,
// and N columns
int numThings = 0;
for(int r = row - 1; r <= row + 1; r++)
    for(int c = col - 1; c <= col + 1; c++)
        if( mat[r][c] )
            numThings++;
```

What is the order of the above code?
A. $O(1)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
D. $\mathrm{O}\left(\mathrm{N}^{3}\right)$
E. $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$

Sidetrack, the logarithm

- Thanks to Dr. Math
- $3^{2}=9$
- likewise $\log _{3} 9=2$
- "The log to the base 3 of 9 is $2 . "$
" The way to think about log is:
- "the log to the base x of y is the number you can raise x to to get y."
- Say to yourself "The log is the exponent." (and say it over and over until you believe it.)
- In CS we work with base 2 logs, a lot
- $\log _{2} 32=? \quad \log _{2} 8=? \quad \log _{2} 1024=? \quad \log _{10} 1000=$?

CS 307 Fundamentals of

When Do Logarithms Occur

- Algorithms have a logarithmic term when they use a divide and conquer technique
- the data set keeps getting divided by 2
public int foo(int n)
\{ // pre n > 0
int total $=0$;
while($\mathrm{n}>0$)
\{ $\quad \mathrm{n}=\mathrm{n} / 2$;
total++;
\}
return total;
\}
- What is the order of the above code?
A. $O(1)$
B. $\mathrm{O}(\log \mathrm{N})$
C. $\mathrm{O}(\mathrm{N})$
D. $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
E. $\mathrm{O}\left(\mathrm{N}^{2}\right)$

CS 307 Fundamentals of
Computer Science

Dealing With Other Methods

```
public int foo(int[] list){
    int total = 0;
    for(int i = 0; i < list.length; i++) {
        total += countDups(list[i], list);
    }
    return total;
}
// method countDups is O(N) where N is the
// length of the array it is passed
```

What is the Big O of foo?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{NlogN})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $\mathrm{O}(\mathrm{N}!)$

Quantifiers on Big O

- It is often useful to discuss different cases for an algorithm
- Best Case: what is the best we can hope for? - least interesting
- Average Case (a.k.a. expected running time): what usually happens with the algorithm?
- Worst Case: what is the worst we can expect of the algorithm?
- very interesting to compare this to the average case

Best, Average, Worst Case

- To Determine the best, average, and worst case Big O we must make assumptions about the data set
- Best case -> what are the properties of the data set that will lead to the fewest number of executable statements (steps in the algorithm)
- Worst case -> what are the properties of the data set that will lead to the largest number of executable statements
- Average case -> Usually this means assuming the data is randomly distributed
- or if I ran the algorithm a large number of times with different sets of data what would the average amount of work be for those runs?
CS 307 Fundamentals of

Independent Loops

```
// from the Matrix class
public void scale(int factor){
        for(int r = 0; r < numRows(); r++)
        for(int c = 0; c < numCols(); c++)
                iCells[r][c] *= factor;
}
Assume an numRows() = N and numCols() = N
```

In other words, a square Matrix.

What is the $\mathrm{T}(\mathrm{N})$? What is the Big O ?
A. $\mathrm{O}(1)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{Nlog} \mathrm{N})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $\mathrm{O}(\mathrm{N}!)$

Significant Improvement - Algorithm with Smaller Big O function

- Problem: Given an array of ints replace any element equal to 0 with the maximum value to the right of that element.

Given:
$[0,9,0,8,0,0,7,1,-1,0,1,0]$
Becomes:
$[\underline{9}, 9, \underline{8}, 8, \underline{7}, \underline{7}, 7,1,-1, \underline{1}, 1,0]$

Replace Zeros - Typical Solution

```
public void replace0s(int[] data){
    int max;
    for(int i = 0; i < data.length -1; i++){
        if( data[i] == 0 ) {
            max = 0;
            for(int j = i+1; j<data.length;j++)
                max = Math.max(max, data[j]);
            data[i] = max;
        }
    }
}
```

Assume most values are zeros.
Example of a dependent loops.

CS 307 Fundamentals of
Computer Science

A Caveat

What is the Big O of this statement in Java?

```
int[] list = new int[n];
```

A. $\mathrm{O}(1)$
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{NlogN})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. $\mathrm{O}(\mathrm{N}!)$
'Why?
E. $\mathrm{O}(\mathrm{N}!)$
A.O(1)
B. $\mathrm{O}(\mathrm{N})$
C. $\mathrm{O}(\mathrm{Nlog} \mathrm{N})$
D. $\mathrm{O}\left(\mathrm{N}^{2}\right)$
E. O(N!)

Summing Executable Statements

- If an algorithms execution time is $\mathrm{N}^{2}+\mathrm{N}$ the it is said to have $\mathrm{O}\left(\mathrm{N}^{2}\right)$ execution time not $\mathrm{O}\left(\mathrm{N}^{2}+\mathrm{N}\right)$
- When adding algorithmic complexities the larger value dominates
- formally a function $f(N)$ dominates a function $g(N)$ if there exists a constant value n_{0} such that for all values $\mathrm{N}>\mathrm{N}_{0}$ it is the case that $g(N)<f(N)$

Summing Execution Times

- For large values of N the N^{2} term dominates so the algorithm is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- When does it make sense to use a computer?

Example of Dominance

' Look at an extreme example. Assume the actual number as a function of the amount of data is:

$$
\mathrm{N}^{2} / 10000+2 \mathrm{Nlog}_{10} \mathrm{~N}+100000
$$

- Is it plausible to say the N^{2} term dominates even though it is divided by 10000 and that the algorithm is $\mathrm{O}\left(\mathrm{N}^{2}\right)$?
- What if we separate the equation into ($\mathrm{N}^{2} / 10000$) and ($2 \mathrm{~N} \log _{10} \mathrm{~N}+100000$) and graph the results.

Comparing Grades

- Assume we have a problem
- Algorithm A solves the problem correctly and is $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Algorithm B solves the same problem correctly and is $\mathrm{O}\left(\mathrm{N} \log _{2} \mathrm{~N}\right)$
- Which algorithm is faster?
- One of the assumptions of Big O is that the data set is large.
" The "grades" should be accurate tools if this is true

Running Times

- Assume $\mathrm{N}=100,000$ and processor speed is $1,000,000,000$ operations per second

Function	Running Time
2^{N}	3.2×10^{30086} years
N^{4}	3171 years
N^{3}	11.6 days
N^{2}	10 seconds
$N \sqrt{N}$	0.032 seconds
$N \log N$	0.0017 seconds
N	0.0001 seconds
\sqrt{N}	3.2×10^{-7} seconds
$\log N$	1.2×10^{-8} seconds

CS 307 Fundamentals of
Computer Science

Theory to Practice OR

Dykstra says: "Pictures are for the Weak."

	1000	2000	4000	8000	16000	32000	64000	128 K
$\mathrm{O}(\mathrm{N})$	2.2×10^{-5}	2.7×10^{-5}	5.4×10^{-5}	4.2×10^{-5}	6.8×10^{-5}	1.2×10^{-4}	2.3×10^{-4}	5.1×10^{-4}
$\mathrm{O}(\mathrm{NlogN})$	8.5×10^{-5}	1.9×10^{-4}	3.7×10^{-4}	4.7×10^{-4}	1.0×10^{-3}	2.1×10^{-3}	4.6×10^{-3}	1.2×10^{-2}
$\mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$	3.5×10^{-5}	6.9×10^{-4}	1.7×10^{-3}	5.0×10^{-3}	1.4×10^{-2}	3.8×10^{-2}	0.11	0.30
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ ind.	3.4×10^{-3}	1.4×10^{-3}	4.4×10^{-3}	0.22	0.86	3.45	13.79	(55)
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ dep.	1.8×10^{-3}	7.1×10^{-3}	2.7×10^{-2}	0.11	0.43	1.73	6.90	(27.6)
$\mathrm{O}\left(\mathrm{N}^{3}\right)$	3.40	27.26	(218)	(1745) 29 min.	$(13,957)$ 233 min	$(112 \mathrm{k})$ 31 hrs	$(896 \mathrm{k})$ 10 days	$(7.2 \mathrm{~m})$ 80 days

Times in Seconds. Red indicates predicated value.
Algorithm Analysis

Change between Data Points

	1000	2000	4000	8000	16000	32000	64000	128K	256k	512k
$\mathrm{O}(\mathrm{N})$	-	1.21	2.02	0.78	1.62	1.76	1.89	2.24	2.11	1.62
$\mathrm{O}(\mathrm{NlogN})$	-	2.18	1.99	1.27	2.13	2.15	2.15	2.71	1.64	2.40
$\mathrm{O}\left(\mathrm{N}^{3 / 2}\right)$	-	1.98	2.48	2.87	2.79	2.76	2.85	2.79	2.82	2.81
$\mathrm{O}\left(\mathrm{N}^{2}\right)$ ind	-	4.06	3.98	3.94	3.99	4.00	3.99	-	-	-
$\begin{aligned} & \mathrm{O}\left(\mathrm{~N}^{2}\right) \\ & \text { dep } \end{aligned}$	-	4.00	3.82	3.97	4.00	4.01	3.98	-	-	-
$\mathrm{O}\left(\mathrm{N}^{3}\right)$	-	8.03	-	-	-	-	-	-	-	-

Value obtained by Time ${ }_{x} /$ Time $_{x-1}$

Okay, Pictures

Put a Cap on Time

CS 307 Fundamentals of Computer Science

Just $\mathrm{O}(\mathrm{N})$ and $\mathrm{O}(\mathrm{Nlog} \mathrm{N})$

Results on a 2GhZ laptop

No O($\mathrm{N}^{\wedge} 2$) Data

CS 307 Fundamentals of Computer Science

Algorithm Analysis

Just O(N)

Reasoning about algorithms

- We have an $\mathrm{O}(\mathrm{N})$ algorithm,
- For 5,000 elements takes 3.2 seconds
- For 10,000 elements takes 6.4 seconds
- For 15,000 elements takes
- For 20,000 elements takes
- We have an $\mathrm{O}\left(\mathrm{N}^{2}\right)$ algorithm
- For 5,000 elements takes 2.4 seconds
- For 10,000 elements takes 9.6 seconds
- For 15,000 elements takes ...?
- For 20,000 elements takes ...?

A Useful Proportion

- Since $F(N)$ is characterizes the running time of an algorithm the following proportion should hold true:
$\mathrm{F}\left(\mathrm{N}_{0}\right) / \mathrm{F}\left(\mathrm{N}_{1}\right) \sim=$ time $_{0} /$ time $_{1}$
- An algorithm that is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ takes 3 seconds to run given 10,000 pieces of data.
- How long do you expect it to take when there are 30,000 pieces of data?
- common mistake
- logarithms?

Why Use Big O?

- As we build data structures Big O is the tool we will use to decide under what conditions one data structure is better than another
- Think about performance when there is a lot of data.
- "It worked so well with small data sets..."
- Joel Spolsky, Schlemiel the painter's Algorithm
- Lots of trade offs
- some data structures good for certain types of problems, bad for other types
- often able to trade SPACE for TIME.
- Faster solution that uses more space
- Slower solution that uses less space

Big O Space

- Less frequent in early analysis, but just as important are the space requirements.
- Big O could be used to specify how much space is needed for a particular algorithm

More on the Formal Definition

- There is a point N_{0} such that for all values of N that are past this point, $\mathrm{T}(\mathrm{N})$ is bounded by some multiple of $\mathrm{F}(\mathrm{N})$
- Thus if $\mathrm{T}(\mathrm{N})$ of the algorithm is $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ then, ignoring constants, at some point we can bound the running time by a quadratic function.
- given a linear algorithm it is technically correct to say the running time is $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$. $\mathrm{O}(\mathrm{N})$ is a more precise answer as to the Big O of the linear algorithm
- thus the caveat "pick the most restrictive function" in Big O type questions.

Formal Definition of Big O (repeated)

- $T(N)$ is $O(F(N))$ if there are positive constants c and N_{0} such that $T(N) \leq c F(N)$ when $\mathrm{N} \geq \mathrm{N}_{0}$
$-N$ is the size of the data set the algorithm works on
$-\mathrm{T}(\mathrm{N})$ is a function that characterizes the actual running time of the algorithm
$-F(N)$ is a function that characterizes an upper bounds on $T(N)$. It is a limit on the running time of the algorithm
- c and N_{0} are constants

What it All Means

- $\mathrm{T}(\mathrm{N})$ is the actual growth rate of the algorithm
- can be equated to the number of executable statements in a program or chunk of code
- $F(N)$ is the function that bounds the growth rate
- may be upper or lower bound
- T(N) may not necessarily equal $F(N)$
- constants and lesser terms ignored because it is a bounding function

Other Algorithmic Analysis Tools

- Big Omega $T(N)$ is $\Omega(F(N))$ if there are positive constants c and N_{0} such that $T(N) \geq c F(N))$ when $N \geq N_{0}$
-Big O is similar to less than or equal, an upper bounds
- Big Omega is similar to greater than or equal, a lower bound
- Big Theta $T(N)$ is $\theta(F(N))$ if and only if $T(N)$ is $O(F(N)$) and $T(N)$ is $\Omega(F(N))$.
- Big Theta is similar to equals

