 Points off 1 2 3 4 Total off Net Score

	
	
	
	
	
	
	
	

CS 307 – Final – Fall 2005
Name__

UTEID login name _______________________________

TA’s Name ___________________________

Instructions:

1. Please turn off your cell phones.

2. There are 4 questions on this test.

3. You have 3 hours to complete the test.

4. You may not use a calculator on the test.

5. When code is required, write Java code.

6. Ensure your answers are legible.

7. You may add helper methods if you wish when answering coding questions.

8. When answering coding questions assume the preconditions of the methods are met

1. (2 points each, 40 points total) Short answer. Place you answers on the attached answer sheet.

· If the code contains a syntax error or other compile error, answer “Compiler error”.

· If the code would result in a runtime error or exception answer “Runtime error”.

· If the code results in an infinite loop answer “Infinite loop”.

Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is correct to say Selection Sort also has a Big O of O(N^3). Give the most precise Big O function. (Closest without going under.)

A.
The following numbers are inserted, one at a time, in the order shown into a binary search tree with no checks to ensure or maintain balance. (i.e. the traditional naïve insertion algorithm.) The tree is initially empty. Draw the resulting tree.

72, 33, 9, 12, 38, 101
For parts B - F consider the following binary tree. For each question assume when a node is processed the value in the node is printed out by the statement:

System.out.print(currentNode.getData() + " ");

B.
What is the output of a preorder traversal of the above tree?

C.
What is the output of an inorder traversal of the above tree?

D.
What is the output of a postorder traversal of the above tree?

E.
What is the output of a level order traversal of the above tree?

F.
Is the binary tree shown above a binary search tree?

G.
If 1000 elements are inserted into a Binary Search Tree using the naïve insertion algorithm, what is the expected (average case) height of the resulting tree? (The height of a tree is the number of links from the root to the deepest leaf. The height of the tree on this page is 3.)

Recall the following methods from the ArrayList class:
	boolean
	add(Object x)
Add x to the end of list. returns true.

	 Object
	set(int index, Object x)
Replaces the element at the specified position in this list with the specified element.

	 void
	add(int index, Object x)

Inserts x at position index, sliding elements at position index and higher to the right (adds 1 to their indices) and adjusts size

	Object
	remove(int index)
Removes element from position index, sliding elements at position index + 1 and higher to the left (subtracts 1 from their indices) and adjusts size returns the element formerly at the specified position

	Object
	get(int index)
return the element at the given index

H.
What is the output of the following code?

ArrayList li = new ArrayList();

for(int i = 0; i < 5; i++)

li.add(0, i);

for(int i = 0; i < li.size(); i++)

System.out.print(li.get(i) + “ “);

I.
What is the output of the following code?

ArrayList li = new ArrayList();

String[] letters = {“A”, “C”, “B”, “M”, “S”, “E”, “F”};
for(int i = 0; i < letters.length; i++)

li.add(letters[i]);

for(int i = 0; i < li.size(); i++)

li.remove(i);

for(int i = 0; i < li.size(); i++)

System.out.print(li.get(i) + “ “);

J.
What is the output of the following code?

Stack<Integer> s = new Stack<Integer>();

for(int i = 5; i < 12; i++)

s.push(i);

int limit = 5;

while(limit > 1)

{
s.pop();

limit--;

}

for(int i = 0; i < 3; i++)

{
System.out.print(s.top() + “ “);

s.pop();

}
K.
Draw the contents of the Queue q2 after the following code has completed. Clearly label the front and back elements of the queue.

Queue <Integer> q1 = new Queue <Integer>();

for(int i = 7; i >= 3; i--)

{
q1.enqueue(i);

q1.enqueue(i);

}

Queue <Integer> q2 = new Queue <Integer>();

int temp;

while(!q1.isEmpty())

{
temp = q1.front();

if(temp % 2 == 0)

q2.enqueue(q1.dequeue());

else

q1.dequeue();

if(!q1.isEmpty())

q2.enqueue(q1.dequeue());

}

L.
What is the output of the following code?

Stack<Integer> s1 = new Stack<Integer>();

Queue<Integer> q = new Queue<Integer>();

for(int i = 0; i < 4; i++)

{
s1.push(i);

q.enqueue(i);

}

Stack<Integer> s2 = new Stack<Integer>();

while(!s1.isEmpty())

{
s2.push(q.dequeue());

s2.push(s1.pop());

}

while(!s2.isEmpty())

System.out.print(s2.pop() + “ “);

M.
Briefly explain why a Stack class should not extend a pre existing List class.

N.
In Java there are two ways of creating generic data structures. The first method involves storing variables of type Object and relying on the fact that all objects are descendants of the Object class. The second method relies on parameterized data types, declaring the data type a particular data structure will hold when it is declared. For example the declaration

Stack<Integer> s1 = new Stack<Integer>();

declares a Stack that holds Integer objects only. Briefly explain biggest reason the second method, (generic data structures based on parameterized types), is better than the first method (storing variables of type Object and relying on inheritance and polymorphism).

O.
What is the average case Big O for inserting 1 item into a binary search tree using the traditional naïve algorithm? There are initially N items in the tree.
P.
What is the average case Big O for inserting N items into a binary search tree using the traditional naïve algorithm? The tree is initially empty.
Q.
What is the worst case Big O for inserting N items into a binary search tree using the red – black tree algorithm? The tree is initially empty.

R.
Briefly explain why it is good practice to have an Iterator for a Linked List class.
S.
In general what determines the length of the code for a particular character or symbol in a Huffman encoding scheme?
T.
On the last assignment you were to conduct an experiment that involved adding integers in ascending order to a binary search tree. If the binary search tree class uses the traditional naïve algorithm for adding and the add method is written recursively a stack overflow error occurred. Briefly explain why this happens.
 2. (Binary Search Trees, 20 points) Complete a method for a Binary Search Tree class that returns the kth smallest item. If k is equal to 1, the smallest value in the Binary Search Tree is returned. If k is equal to 2, the second smallest value in the Binary Search Tree is returned. And so forth.

Important. The space requirement for your method must be no worse than O(h) where h is the height of the tree. If there are N elements in the tree and your method requires O(N) space, you will lose significant points on this question.
Hint: You can use an array of ints of length 1 to track how many nodes you have visited.
As an example, consider the following Binary Search Tree:

If the Binary Search Tree object, t refers to the above tree the following would be the result to various calls to getKth.

t.getKth(1) would return 30.

t.getKth(2) would return 40.

t.getKth(3) would return 45.

t.getKth(9) would return 300.

Here is the BinarySearchTree class:

public class BinarySearchTree

{
private TreeNode myRoot;

private int mySize;

// returns the number of items in this Binary Search Tree

public int size()

// to be completed by the student

/* find the kth smallest item in the tree.

 pre: 0 < k <= size()

 post: return the kth smallest item

*/

public Comparable getKth(int k)

// other methods not shown

}

Here is the TreeNode class:
public class TreeNode

{ public TreeNode()
 public TreeNode(Object initValue)
 public TreeNode(Object initValue, TreeNode initLeft,

TreeNode initRight)

 public Object getValue()
 public TreeNode getLeft()
 public TreeNode getRight()

 public void setValue(Object theNewValue)
 public void setLeft(TreeNode theNewLeft)
 public void setRight(TreeNode theNewRight)
}

Imporant: Briefly explain you algorithm. (3 points)

Complete the getKth method on the next page. You can add a helper method if you wish.
 /* find the kth smallest item in the tree.

 pre: 0 < k <= size()

 post: return the kth smallest item

*/
public Comparable getKth(int k)
{
3. (Working with Data Structures, 20 points) A graph consists of a set of vertices and a set of edges that connect the vertices. Vertices are analogous to the nodes of a linked list or a binary tree and edges are analogous to the links between nodes of a linked list or binary tree.
In an undirected graph if an link exists between two nodes movement is allowed back and forth, from one node to another, in either direction. This question involves undirected graphs.
Here is an example of a graph. In the example each node is numbered 0 to N-1 where N is the number of nodes in the graph. Nodes are specified by an integer.

[image: image1]
One method for representing a graph is with an adjacency matrix. The adjacency matrix is a square 2D matrix of booleans. Each row represents a node. Elements in the row are true if a link exists between the node specified by the row and the node specified by the column. Elements are false if no direct link exists between the nodes represented by the row and the column. For example, the adjacency matrix for the graph shown above would be:
	node
	0
	1
	2
	3
	4
	5
	6
	7
	8

	0
	false
	true
	false
	false
	false
	false
	false
	false
	false

	1
	true
	false
	false
	true
	false
	true
	false
	false
	false

	2
	false
	false
	false
	true
	false
	false
	false
	false
	false

	3
	false
	true
	true
	false
	false
	false
	true
	false
	false

	4
	false
	false
	false
	false
	false
	true
	true
	false
	false

	5
	false
	true
	false
	false
	true
	false
	true
	true
	true

	6
	false
	false
	false
	true
	true
	true
	false
	false
	false

	7
	false
	false
	false
	false
	false
	true
	false
	false
	false

	8
	false
	false
	false
	false
	false
	true
	false
	false
	false

Complete the following method that is a member of the Graph class:

/*
determine the nodes that are within numLinks or fewer links

of the specified node.

pre: 0 <= nodeNumber < size(),numLinks > 0

post: return an ArrayList of Integers that are within

numLink links of nodeNumber. There are no duplicates in

the returned ArrayList.
*/
public ArrayList<Integer> getNodes(int nodeNumber, int numLinks)

Here are some examples of results to calls to getNodes given the example graph shown on the previous page:
	Value of
nodeNumber
	Value of
numLinks
	Values in the returned ArrayList.
The values in the ArrayList do not
need to be in sorted order.

	0
	1
	1

	0
	2
	1, 3, 5

	1
	1
	0, 3, 5

	1
	2
	0, 2, 3, 4, 5, 6, 7, 8

	1
	3
	0, 2, 3, 4, 5, 6, 7, 8

	2
	1
	3

	2
	2
	1, 3, 6

	2
	3
	0, 1, 3, 4, 5, 6

	2
	4
	0, 1, 3, 4, 5, 6, 7, 8

	6
	1
	3, 4, 5

nodeNumber is not included in the returned ArrayList, unless the node is self looping. A self looping node has a link that goes to itself. In the example shown none of the nodes are self looping.
Here is the Graph class.

public class Graph
{
private boolean[][] myAdjacencyMatrix;

// myAdjacencyMatrix is a square matrix.

// myAdjacencyMatrix.length is always equal to the number

// of nodes in the graph. In other words, the number of rows

// and the number of columns in the matrix are always equal

// to size()

// return the number of nodes in this Graph

public int size()

// students are to complete this method

/*
determine the nodes that are within numLinks or fewer

links of the specified node.

pre: 0 <= nodeNumber < size(),numLinks > 0

post: return an ArrayList of Integers that are within

numLink links of nodeNumber. There are no

duplicates in the returned ArrayList.

*/

public ArrayList<Integer> getNodes(int nodeNumber,

int numLinks)

}
Here is a summary of methods from the ArrayList class.
	boolean
	add(AnyType o)
 Appends the specified element to the end of this list.

	 void
	add(int index, AnyType element)
 Inserts the specified element at the specified position in this list.

	 void
	clear()
 Removes all of the elements from this list.

	 boolean
	contains(AnyType elem)
 Returns true if this list contains the specified element.

	 void
	ensureCapacity(int minCapacity)
 Increases the capacity of this ArrayList instance, if necessary, to ensure that it can hold at least the number of elements specified by the minimum capacity argument.

	 AnyType
	get(int index)
 Returns the element at the specified position in this list.

	 int
	indexOf(AnyType elem)
 Searches for the first occurrence of the given argument, testing for equality using the equals method.

	 boolean
	isEmpty()
 Tests if this list has no elements.

	AnyType
	remove(int index)
 Removes the element at the specified position in this list.

	 AnyType
	set(int index, AnyType element)
 Replaces the element at the specified position in this list with the specified element.

	 int
	size()
 Returns the number of elements in this list.

Complete the method getNodes on the next page.
Important: Briefly explain you algorithm. (3 points)

/*
determine the nodes that are within numLinks or fewer

links of the specified node.

pre: 0 <= nodeNumber < size(),numLinks > 0

post: return an ArrayList of Integers that are within

numLinks links of nodeNumber. There are no

duplicates in the returned ArrayList.
*/
public ArrayList<Integer> getNodes(int nodeNumber, int numLinks)

Scratch Paper

Scratch Paper

4. (Implementing Data Structures, 20 Points) Implement the enqueue method for a priority queue. A priority queue is like a regular queue except that each element that is enqueued is also given a priority. When added an item moves in front of all items that have a lower priority than it. In this priority queue class priorities are stated with ints. 1 is the highest priority. The maximum positive integer is the lowest priority.
This priority queue class uses a native array of PriPair objects as its internal storage container. A PriPair object holds a single Object, the data, and a single int, the priority of that data. The front of the queue is always at index 0 in the array. The array may have extra capacity in it.
Here is an example of what the priority queue may look like at a give instance in time:

array index:

 0 1 2 3 4 5 6
	“Apple”
priority: 2
	“Grape”
priority: 4
	“Apricot”
priority: 12
	“Quince”
priority: 14
	“Banana”
priority: 14
	null
	null

Front of

Back of

Queue

Queue
If the value “Berry” were enqueued with a priority of 14 the queue would now look like this:

array index:

 0 1 2 3 4 5 6
	“Apple”
priority: 2
	“Grape”
priority: 4
	“Apricot”
priority: 12
	“Quince”
priority: 14
	“Banana”
priority: 14
	“Berry”
priority: 14
	null

Front of

 Back of

Queue

 Queue
If the value “Orange” were enqueued with a priority of 1 the queue would now look like this:

array index:

 0 1 2 3 4 5 6
	“Orange”
priority: 1
	“Apple”
priority: 2
	“Grape”
priority: 4
	“Apricot”
priority: 12
	“Quince”
priority: 14
	“Banana”
priority: 14
	“Berry”
priority: 14

Front of

 Back of

Queue

 Queue

Here is the PriPair class.

public class PriPair

{
public PriPair(int priority, Object data)

public int getPriority()

public Object getData()

// implementation and other methods not shown

}

Here is the PriorityQueue class
public class PriorityQueue

{
private PriPair[] myCon;

private int myBack;

// myBack holds the index of the current last element in the

// queue

// resizes the internal storage container, doubling the size.

private void resize()

// students are to complete this method

/*
enqueue data into the proper spot in this priority queue

pre: priority > 0

post: data enqueued to the proper spot in this priority

queue based on priority

*/

public void enqueue(Object data, int priority)

{

Scratch Paper

Scratch Paper

Scratch Paper

Scratch Paper

Scratch Paper

Name:_______________________________

TAs name: ___________________________

Answer sheet for question 1, short answer questions

A.

B.

C.

D.

E.

F.

G.

H.

I.

J.

K.

L.

M.

N.

O.

P.

Q.

R.

S.

T.

 77

 9

 17

13

37

root of tree

97

 75

 75

70

8

7

6

5

300

200

 100

 30

 45

40

50

4

3

2

1

0

 150

 85

CS 307 – Final – Fall 2005
 16

