 Points off 1 2 3 4 Total off Net Score Percentage

	
	
	
	
	
	
	
	

CS 307 – Final – Spring 2004

Name__

UTEID login name _______________________________

Section Leader's Name ___________________________

Instructions:

1. There are 4 questions on this test.

2. You have 3 hours to complete the test.

3. You may not use a calculator on the test.

4. When code is required, write Java code.

5. The style guide is not in effect except where noted.

6. Efficiency is not graded except where noted.

7. Ensure your answers are legible.

8. When writing code you may not use any methods or classes from the Java Standard Library except as noted and the System.out.print, System.out.println, the equals method, and native arrays.

9. In coding question you may add helper methods if you wish.

1. (2 points each, 40 points total) Short answer. If an error would occur answer "syntax error" or "runtime error" depending on what type of error it would be.

Recall that when asked for Big O your answer should be the most precise Big O function. For example Selection Sort has an average case Big O of O(N^2), but per the formal definition of Big O it is technically correct to say Selection Sort also has a Big O of O(N^3). On this test I want the most precise Big O function. (Closest without going under.)

A.
The following numbers are inserted, one at a time, in the order shown into a binary search tree with no checks to ensure or maintain balance. The tree is initially empty. Draw the resulting tree.

60, 170, 146, 217, 104

For parts B, C, and D consider the following binary tree. For each question assume when a node is processed the value in the node is printed out by the statement:

System.out.print(currentNode.getData() + " ");

B.
What is the output of a preorder traversal of the above tree?

__

C.
What is the output of an inorder traversal of the above tree?

__

D.
What is the output of a postorder traversal of the above tree?

__
E.
Consider a Queue class that holds ints. What is the output of the following code?

IntQueue q = new IntQueue();

for(int i = 0; i < 3; i++)

q.enqueue(i * 2);

int limit = q.size();

for(int i = 0; i < limit; i++)

{
int temp = q.dequeue();

q.enqueue(temp);

q.enqueue(temp);

}

while(!q.isEmpty())

{
System.out.print(q.dequeue() + " ");

}

F.
Consider a List class that holds ints.

	void
	add(int index, int element)
Inserts the specified element at the specified position in this list. Shifts the element currently at that position (if any) and any subsequent elements to the right (adds one to their indices).

	 void
	add(int o)
Appends the specified element to the end of this list.

	 int
	remove(int index)

Removes the element at the specified position in this list. Shifts any subsequent elements to the left (subtracts one from their indices). Returns the element that was removed from the list.

	int
	get(int index)
 Returns the element at the specified position in this list.

	int
	size()
 Returns the number of elements in this list.

What is the output of the following code?

List s1 = new List();

for(int i = 5; i >= 0; i--)

s1.add(i);

for(int i = 0; i < s1.size(); i++)

System.out.print(s1.get(i) + " ");

G.
This question uses the same List class as part F. What is the output of the following code?

List s1 = new List();

s1.add(2);

s1.add(4);

s1.add(6);

int limit = s1.size();

for(int i = 0; i < limit; i++)

s1.add(i + i, i);

s1.remove(limit);

s1.remove(limit + 1);

for(int i = 0; i < s1.size(); i++)

System.out.print(s1.get(i) + " ");

H.
Consider a Map class that uses a Binary Search Tree as its internal storage container. The Binary Search Tree uses the naïve insertion algorithm and has no checks to ensure balance in the tree. The Map contains N items. What is the average case Big O for inserting an item into the Map?

I.
Consider a Set class that uses a Red Black tree as its internal storage container. The Set contains N items. What is the worst case Big O for inserting an item into the Set?

J.
What is the average case Big O for inserting an item into a Hash Table that contains N

items?

K.
Consider the following class:

public class Node
{
public Object data;

public Node left;

public Node right;

}
Consider the following method:

public void vanilla(Node root)
{
if(root != null)

{
System.out.println(root.data);

vanilla(root.left);

vanilla(root.right);

}

}

If vanilla is called with the root of a Binary Tree what is the Big O of vanilla? Define what the variable N in your Big O equation represents.

L.
A Graph class uses a matrix of booleans to represent an adjacency matrix for the nodes in the Graph. There is no extra capacity in the matrix. In other words the it is a square matrix. The number of rows equals the number of columns which in turn equals the number of nodes in the graph. The graph contains N nodes. What is the Big O of adding 1 node to the graph?

M.
Consider the following partial List class:

public class List

{
private int iMySize;

private Object[] myCon;

public void add(Object data)

{
if(iMySize == myCon.length)

resize();

myCon[iMySize] = data;

iMySize++;

}

private void resize()

{
Object[] temp = new Object[myCon.length + 10];

for(int i = 0; i < myCon.length; i++)

temp[i] = myCon[i];

myCon = temp;

}

}
What is the average case Big O of the add method in the List class above?

N.
Consider the following ListNode class:

public class ListNode
{
public Object data;

public ListNode next;

public ListNode prev;

}
Draw the object variables and objects that exists after the following code is executed. Use a "/" to indicate any object references that are null. Recall that all object variables in Java are pointers.

ListNode n1 = new ListNode();

ListNode n2 = new ListNode();

n1.next = n1;

n1.prev = n2;

n2.prev = n2;

n2.next = new ListNode();

n2.next.prev = n1;

O.
Consider a class that is to hold information about library books, Library. Each LibraryBook object has a title, author, edition, publisher, and a unique call number. What would you use as your internal storage container for all the LibraryBooks in the Library class? What is the expected average case Big O for adding another LibraryBook to a Library that contains N LibraryBooks based on the internal storage container you picked?

P.
The height of a tree is the maximum distance (path length) to a leaf from the root. A perfect

binary tree is a binary tree with all leaf nodes at the same depth. All internal nodes (non leaf nodes) have exactly two children. How many nodes does a perfect binary tree with height 5 contain?

Q.
What is the worst case Big O for adding N items to an initially empty Binary Search Tree? The Binary Search Tree uses the naïve insertion algorithm, with no checks to ensure balance.

R.
Two obvious choices for the internal storage container for a Map are a Hashtable and a Binary Search Tree. Discuss the advantages of using a Hashtable instead of a Binary Search Tree as the internal storage container for a Map implemented in Java.

S.

A full binary tree is one in which every node is either a leaf or has 2 children. What is the maximum height of a full binary tree with 11 nodes?

T.
Explain why the internal storage container for the ArrayList class in Java is a native array of Objects. Why use the data type Object?

private Object[] myCon;

2. (Trees, 25 points) Write a method to generate the Huffman codes for characters in a Huffman code tree and print them to standard output. Recall that a Huffman code tree is a full binary tree. Nodes that are leaves contain a character. Internal nodes do not contain characters. For example

Code words for characters are derived by the series of left and right movements through the tree starting at the root. Any move to the left causes a 0 to be concatenated to the code word and any move to the right causes a 1 to be concatenated to the code word. The initial code word contains no elements. So in the above tree the code word for "S" would be 0000 (left – left – left – left). The code word for "M" would be 110 (right – right – left). The output given the above tree could be:

S 0000

T 0001

V 001
N 01

E 10

M 110

K 111

Note, you may print out the characters and their associated code words in any order you wish.

You can store code words as Strings that contain only "1"s and "0"s. You may use the String class including String literals, the concatenation operator (+), and the following methods from the String class:

	 char
	charAt(int index)
 Returns the character at the specified index.

	int
	length()
 Returns the length of this string.

	String
	substring(int beginIndex)
 Returns a new string that is a substring of this string. The substring begins with the character at the specified index and extends to the end of this string.

	String
	substring(int beginIndex, int endIndex)
 Returns a new string that is a substring of this string. The substring begins at the specified beginIndex and extends to the character at index endIndex - 1. Thus the length of the substring is endIndex-beginIndex.

The Huffman Tree is made up of nodes of type HuffNode

public class HuffNode
{
public HuffNode(int freq, String ch,

HuffNode left, HuffNode right)

/* create a new HuffNode. If this is an internal node, ch

will be null. If this is a leaf node left and right will be null. freq is the frequency of this character for leaf nodes or the sum of its left child's getFreq() and its right child's getFreq() for internal nodes.

*/

public int getFreq()

// get the frequency of this character in original text

public String getChar()

// get the character in this node. if this node is an

// internal node null is returned

public HuffNode getLeft()

// return the left child of this node

// returns null if there is no left child
public HuffNode getRight()

// return the right child of this node

// returns null if there is no right child

}

Write a method that prints all the codes for characters in a Huffman code tree to standard output using System.out.println.

public void printAllCodes(HuffNode root)

/*
pre: root != null. root is the root node for a Huffman code tree. root is not a leaf.

post: print out all codes for characters in this Huffman code tree to standard output as discussed above.

*/

{

3. (Implementing data structures, 25 points). Implement an add method and an access method for a MultiMap. Maps allow only one value to be associated with a key, but a MultiMap allows multiple values to be associated with a unique key.

Example of a MultiMap

	Key
	Values

	"Dog"
	"Velvet", "Bessie", "Neville"

	"Cat"
	"Patches"

	"Fish"
	"Nemo", "Marlin"

Given the above MultiMap adding the key "Dog" and the value "Delilah" would result in the following MultiMap:

	Key
	Values

	"Dog"
	"Velvet", "Bessie", "Neville", "Delilah"

	"Cat"
	"Patches"

	"Fish"
	"Nemo", "Marlin"

The key "Dog" was already present so adding the key and value pair of ("Dog", "Delilah") results in adding Delilah to the group of values already associated with "Dog". Adding ("Dog", "Velvet") would result in no change in the MultiMap because Velvet is already associated with the key "Dog". Adding the key and value pair ("Sloth", "Velvet") would result in the following MultiMap:

	Key
	Values

	"Dog"
	"Velvet", "Bessie", "Neville", "Delilah"

	"Cat"
	"Patches"

	"Fish"
	"Nemo", "Marlin"

	"Sloth"
	"Velvet"

The "Velvet" associated with Dog does not need to be removed as a value can be associated with more than one key.

You will implement the add and access methods for a MultiMap using ArrayList objects as the internal storage containers. The ArrayList methods you may use are listed below.

	Constructor Summary

	ArrayList()
 Constructs an empty list with an initial capacity of ten.
	

Allowed ArrayList methods are on the following page:

	Method Summary

	 void
	add(int index, Object element)
 Inserts the specified element at the specified position in this list. Shifts the element currently at that position (if any) and any subsequent elements to the right (adds one to their indices). O(N)

	 boolean
	add(Object o)
 Appends the specified element to the end of this list. O(1)

	boolean
	contains(Object elem)
 Returns true if this list contains the specified element. O(N)

	Object
	get(int index)
 Returns the element at the specified position in this list. O(1)

	int
	indexOf(Object elem)
 Searches for the first occurrence of the given argument, testing for equality using the equals method. Returns –1 if elem is not present in this ArrayList O(N)

	Object
	remove(int index)
 Removes the element at the specified position in this list. Shifts any subsequent elements to the left (subtracts one from their indices). O(N)

	void
	clear()
 Removes all of the elements from this list.

	Object
	set(int index, Object element)
 Replaces the element at the specified position in this list with the specified element.

	 int
	size()
 Returns the number of elements in this list.

Part A (5 points). List the private instance variables for your class and explain how you will store the keys and values of a MultiMap. Keep in mind that although you are not implementing the a size method that returns the total number of values stored in the multi map, you want the size method to be constant time, O(1), and your instance variables need to support a constant time size method.

public class MultiMap

{
// list your private instance variables and explain how

// you will store the keys and values of the MultiMap

Part B (10 points) Implement the add method for the MultiMap class. State the Big O of your method assuming there are N keys and M total values in the MultiMap. You may assume the average number of values per key is M/N.

public void add(Object key, Object value)

{
/*
Associates the specified value with the specified key in

this multi map. If the multi map previously contained a mapping for this key, the specified value is added to the set of elements associated with the specified key. If the specified value is already associated with the specified key then this multi map is not altered in any way.

*/

Part C (10 points) Implement the get method for the MultiMap class. State the Big O of your method assuming there are N keys and M total values in the MultiMap. You may assume the average number of values per key is M/N.

public ArrayList get(Object key)

{
/*
Returns an ArrayList with the values associated with the

specified key in this multi map. Method returns a

shallow copy of the values, meaning a new ArrayList object, but with pointers to the values.

*/

4. (Using data structures, 25 points). This question uses a Graph class. The N nodes in a graph object are numbered 0 to N-1. The Graph class consists of the following methods:

public class Graph
{

public int numNodes()

// return the number of nodes in this graph

public boolean linkExists(int from, int to)

/*
pre: 0 <= from < numNodes(), 0 <= to < numNodes

post: return true if a direct link exists between nodes

from and to in this graph, false otherwise. Note, this

is an undirected graph, thus every node connects to itself and if from == to linkExists returns true.

*/

}

The methods you are writing in this question are not part of the Graph class and thus you do not have access to any private instance variables of the Graph class.

This question in concerned with the number of nodes each node connects to directly, other than itself.

	Node Number
	Number of nodes with direct links, other than itself

	0
	3

	1
	1

	2
	5

	3
	2

	4
	2

	5
	3

Part A (10 points) Complete a method that determines how many nodes, other than itself, a given node in a graph is directly linked to.

public int numDirectLinks(Graph g, int nodeNum)

{

/*
pre: g != null

post: return the number of nodes nodeNum, other than itself, connects to in graph g or –1 if nodeNum is not a valid node in graph g. Example: for the graph on page 18 numDirectLinks(g, 1) would return 1.

*/

Part B (15 points). Complete a method that determines which node or nodes in a graph have the most direct links to other nodes. For this question assume that method numDirectLinks from part A is in the same class as this method. You may also assume numDirectLinks works regardless of what you wrote in part A. Reimplementation of the functionality of numDirectLinks (instead of calling numDirectLinks) in this part will result in a loss of points. You may use the ArrayList class and the same methods as on question 3. You may

You may also use the Integer class, but only the following constructor:

Integer(int value)
 Constructs a newly allocated Integer object that represents the specified int value.

public ArrayList nodeWithMost(Graph g)

{

/*
pre: g != null

post: return an ArrayList that contains integer objects corresponding to the node or nodes that have the most direct links to other nodes, other than themselves. Example: for the graph on page 18 nodeWithMost (g) would return an ArrayList of size 1 with a single Integer object with the value 2.

*/

"N"

"V"

"N"

"A"

"H"

"G"

root of tree

"I"

"S"

"E"

"L"

"K"� 13

"E"�22

"M"� 9

22

44

"V"� 8

"N"� 22

38

"T"� 3

root of tree

"S"� 5

0

2

3

1

4

5

 8

16

82

CS 307 – Final – Spring 2004
 20

