Topic 19
Line Based File Input

"Composing computer programs to solve scientific problems
is like writing poetry. You must choose every word with care
and link it with the other words in perfect syntax. There is no
place for verbosity or carelessness. To become fluent in a
computer language demands almost the antithesis of
modern loose thinking. It requires many interactive
sessions, the hands-on use of the device. You do not learn a
foreign language from a book, rather you have to live in the
country for year to let the language become an automatic
part of you, and the same is true for computer Ianguages

-James Lovelock

Copyright Pearson Education, 2010
Based on slides by Marty Stepp and Stuart Reges
from http://www.buildingjavaprograms.com/

Hours question

> Given a file hours. txt with the following
contents:

123 Kim 12.5 8.1 7.6 3.2
456 Eric 4.0 11.6 6.5 2.7 12
789 Stef 8.0 8.0 8.0 8.0 7.5

— Consider the task of computing hours worked by
each person:

Kim (ID#123) worked 31.4 hours (7.85 hours/day)
Eric (ID#456) worked 36.8 hours (7.36 hours/day)
Stef (ID#789) worked 39.5 hours (7.9 hours/day)

Hours answer (flawed)

// This solution does not work!
import java.io.*;
import java.util.Scanner;
public class HoursWorked {
public static void main(String[] args)
throws FileNotFoundException {
Scanner fileScanner = new Scanner (new File ("hours.txt"));
while (fileScanner.hasNext ()) {
// process one person
int id = fileScanner.nextInt();
String name = fileScanner.next();
double totalHours = 0.0;
int days = 0;
while (fileScanner.hasNextDouble()) {
totalHours += fileScanner.nextDouble() ;
days+t++;

// for File

}

System.out.println (name + "
") worked " + totalHours + " hours (" +
(totalHours / days) + " hours/day)");

(ID#" + id +

} 123 Kim 12.5 8.1 7.6 3.2
456 Eric 4.0 11.6 6.5 2.7 12

Clicker 1

» What happens when the solution on the
previous slide is run given a file with this data?
123 Kim 12.5 8.1 7.6 3.2
456 Eric 4.0 11.6 6.5 2.7 12
789 Stef 8.0 8.0 8.0 8.0 7.5

A. prints out correct answer

B. no output due to syntax error

C. some output then an InputMismatchException
D. some output then a NoSuchElementException
E. More than one of A - D is correct

Flawed output

Kim (ID#123) worked 487.4 hours (97.48 hours/day)
Exception in thread "main"
java.util.InputMismatchException
at java.util.Scanner.throwFor (Scanner.java:840)
at java.util.Scanner.next (Scanner.java:1461)
at java.util.Scanner.nextInt (Scanner.java:2091)
at HoursWorked.main (HoursBad.java:9)

— The inner while loop is grabbing the next person's ID.

— We want to process the tokens, but we also care about
the line breaks (they mark the end of a person's data).

> A better solution is a hybrid approach:
— First, break the overall input into lines.
— Then break each line into tokens.

Line-based Scanner methods

Method Description

nextLine () returns next entire line of input (from cursor to \n)

hasNextLine () |returns true if there are any more lines of input
to read (always true for console input)

Scanner input
= new Scanner (new File ("<filename>")) ;
while (input.hasNextLine()) {
String line = input.nextLine();
<process this line>;

Consuming lines of input

23 3.14 John Smith
45.2 19

"Hello" world

» The Scanner reads the lines as follows:
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

A

— String line = input.nextLine();
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

A

- String line2 = input.nextLine();
23\t3.14 John Smith\t"Hello" world\n\t\t45.2 19\n

— Each \n character is consumed but not returned.

Scanners on Strings

» A Scanner can tokenize the contents of a String:

Scanner <name> = new Scanner (<String>) ;

— Example:
String text = "15 3.2 hello 9 27.5";
Scanner scan = new Scanner (text);
int num = scan.nextInt():;
System.out.println (num) ; // 15
double num?2 = scan.nextDouble();
System.out.println (num2) ; // 3.2
String word = scan.next();
System.out.println (word) ; // "hello"

8

Mixing lines and tokens Hours question

— Fix the Hours program to read the input file properly:

Input file input.txt: Output to console: .
The quick brown fox jumps over Line has 6 words 123 Kim 12.5 8.1 7.6 3.2

the lazy dog. Line has 3 words 456 Eric 4.0 11.6 6.5 2.7 12

// Counts the words on each line of a file

Scanner input = new Scanner (new File ("input.txt")); 789 Stef 8.0 8.0 8.0 8.0 7.5
while (input.hasNextLine()) {
String line = input.nextLine();
Scanner lineScan = new Scanner(line); — Recall, it should produce the following output:
// process the contents of this line
;ﬁlzo?ﬁn:sg;n hasNext()) { Kim (ID#123) worked 31.4 hours (7.85 hours/day)
String word = lineScan.next(); Eric (ID#456) worked 36.8 hours (7.36 hours/day)
) count+; Stef (ID#789) worked 39.5 hours (7.9 hours/day)
System.out.println("Line has " + count + " words");
}
9 10

Hours answer, corrected

// Processes an employee input file and outputs each employee's hours.
import java.io.*; // for File
import java.util.*; // for Scanner

.
public class Hours { FIIe Out ut
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner (new File ("hours.txt"));
while (input.hasNextLine()) {
String line = input.nextLine();
processEmployee (line) ;

}

ing: 6.4 -6.5
public static void processEmployee (String line) { readlng- . - .

Scanner lineScan = new Scanner (line);

int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Eric"
double sum = 0.0;

int count = 0;

while (lineScan.hasNextDouble ()) {
sum = sum + lineScan.nextDouble ();
count++;

}
double average = sum / count;

System.out.println(name + " (ID#" + id + ") worked " +
sum + " hours (" + average + " hours/day)");

1" 12

Output to files

» PrintStream: An object in the java.io
package that lets you print output to a
destination such as a file.

— Any methods you have used on System.out
(such as print, println) will work on a

PrintStream.
> Syntax:

PrintStream <name>
= new PrintStream(new File ("<filename>")) ;

Example:
PrintStream output

= new PrintStream(new File ("out.txt"));
output.println("Hello, file!"); 13
output.println("This is a second line of output.");

Details about PrintStream

PrintStream <name>
= new PrintStream(new File ("<filename>")) ;

— If the given file does not exist, it is created.

— If the given file already exists, it is overwritten.

— The output you print appears in a file, not on the console.
You have to open the file with an editor to see it.

— Do not open the same file for both reading
(Scanner)
and writing (PrintStream) at the same time.

* You will overwrite your input file with an empty file (0
bytes). 14

System.out and PrintStream

» The console output object, System.out, is a
PrintStream.

PrintStream outl = System.out;

PrintStream out2 = new PrintStream(new File("data.txt"));
outl.println("Hello, console!"); // goes to console
out2.println("Hello, file!"); // goes to file

— A reference to it can be stored ina PrintStream
variable.

* Printing to that variable causes console output to
appear.

—You can pass System.out to a method as a
PrintStream.
« Allows a method to send output to the console or a fil®.

PrintStream question

» Modify our previous Hours program to use a
PrintStream to send its output to the file
hours out.txt.

» The program will produce no console output.
> the file hours out. txt will be created with the text:

Kim (ID#123) worked 31.4 hours (7.85 hours/day)
Eric (ID#456) worked 36.8 hours (7.36 hours/day)
Stef (ID#789) worked 39.5 hours (7.9 hours/day)

16

Prompting for a file name

» We can ask the user to tell us the file to read.

PrintStream answer

iépiigc?zszfieoxr.l*?mploi//?efi:pgzliile and outputs each employee's hours. — The fllename mlght have Spaces’ use
import java.util.*; // for Scanner neXtLll'le () , not l’leXt ()

public class Hours2 {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner (new File ("hours.txt")); . .
PrintStream out = new PrintStream(new File("hours_out.txt")); // prompt for 1nput file name
while (input.hasNextLine()) { — 2 o
String line = input.nextLine(); Scanner conso%e = new Scanr_ler (System.in);
} processEmployee (out, line); System.out.print("Type a file name to use: ");
} String filename = console.nextLine() ;
public static void processEmployee (PrintStream out, String line) { Scanner inpUt = new Scanner (new Flle (filename)) 7

Scanner lineScan = new Scanner (line);

int id = lineScan.nextInt(); // e.g. 456
String name = lineScan.next(); // e.g. "Eric" . . .
double sum = 0.0; » Files have an exists method to test for file-not-found:
int count = 0;
while (lineScan.hasNextDouble()) { . . — : " "y .
sum = sum + lineScan.nextDouble (); File file = new Flle(hours.txt) 4
, commer if ('file.exists()) {

// try a second input file as a backup
double average = sum / count; System.out.print ("hours file not found!");
out.println(name + " (ID#" + id + ") worked " + + _ . " vy .

sum + " hours (" + average + " hours/day)"); file = new File("hours2.txt");

