
Topic 23

arrays - part 3 (tallying, text

processing)

"42 million of anything is a lot."

-Doug Burger, circa 2003

(commenting on the number of transistors in

the Pentium IV processor)

As of 2020 processors for

personal computers have, on

the order of billions

of transistors.

What is output when method clicker2 is called?

A. [1, 2][0, 0, 0][1, 2]

B. [1, 2][1, 2][1, 2]

C. [-1, 4][0, 0, 0][0, 0, 0]

D. [-1, 4][0, 0, 0][1, 2]

E. [-1, 4][0, 0, 0][-1, 4]
2

A multi-counter problem

Problem: Write a method mostFrequentDigit

that returns the digit character that occurs most

frequently in a String.

– Example: The String "669260267" contains:

one 0, two 2s, four 6es, one 7, and one 9.

mostFrequentDigit("669260267") returns '6'.

– If there is a tie, return the digit with the lower value.

mostFrequentDigit("5aaaa7135203") returns '3'.

3

A multi-counter problem

We could declare 10 counter variables ...
int counter0, counter1, counter2, counter3, counter4,

counter5, counter6, counter7, counter8, counter9;

But a better solution is to use an array of size 10.

– The element at index i will store the counter for digit

value i.

– Example for 669260267:

– How do we build such an array? And how does

it help?

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

4

Creating an array of tallies

// assume n = 669260267

int[] counts = new int[10];

while (n > 0) {

// pluck off a digit and add to proper counter

int digit = n % 10;

counts[digit]++;

n = n / 10;

}

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

5

Tally solution
// Returns the digit value that occurs most frequently in n.

// Breaks ties by choosing the smaller value.

public static int mostFrequentDigit(int n) {

int[] counts = new int[10];

while (n > 0) {

int digit = n % 10; // pluck off a digit and tally it

counts[digit]++;

n = n / 10;

}

// find the most frequently occurring digit

int bestIndex = 0;

for (int i = 1; i < counts.length; i++) {

if (counts[i] > counts[bestIndex]) {

bestIndex = i;

}

}

return bestIndex;

}

6

Tally Problem
Write a method to pick random numbers

from 0 to 99.

A parameters specifies the number of

random numbers to pick

The method returns the difference between

the number of times the most and least

picked number

Clicker 2: With 1,000,000 numbers what do

you expect the difference to be?

A. 0 B. 1 - 10 C. 11 - 100

D. 101 - 1000 E. > 1000 7

Array histogram question

Given a file of integer exam scores, such as:

82

66

79

63

83

Write a program that will print a histogram of stars

indicating the number of students who earned each

unique exam score.

85: *****

86: ************

87: ***

88: *

91: **** 8

Array histogram answer
// Reads a file of test scores and shows a histogram of the score distribution.

import java.io.*;

import java.util.*;

public class Histogram {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("midterm.txt"));

int[] counts = new int[101]; // counters of test scores 0 - 100

while (input.hasNextInt()) { // read file into counts array

int score = input.nextInt();

counts[score]++; // if score is 87, then counts[87]++

}

for (int i = 0; i < counts.length; i++) { // print star histogram

if (counts[i] > 0) {

System.out.print(i + ": ");

for (int j = 0; j < counts[i]; j++) {

System.out.print("*");

}

System.out.println();

}

}

}

}

9

Text processing

reading: 4.3

10

Type char

char : A primitive type representing single characters.

– A String is stored internally as an array of char

String s = "Ali G.";

– It is legal to have variables, parameters, returns of type char

• surrounded with apostrophes: 'a' or '4' or '\n' or '\''

char letter = 'T';

System.out.println(letter); // T

System.out.println(letter + "exas!"); // Texas!

index 0 1 2 3 4 5

value 'A' 'l' 'i' ' ' 'G' '.'

11

The charAt method

 The chars in a String can be accessed using the charAt method.

– accepts an int index parameter and returns the char at that index

String food = "cookie";

char firstLetter = food.charAt(0); // 'c'

System.out.println(firstLetter + " is for " + food);

 You can use a for loop to print or examine each character.

String major = "CS!";

for (int i = 0; i < major.length(); i++) { // output:

char c = major.charAt(i); // C

System.out.println(c); // S

} // !

12

Comparing char values

You can compare chars with ==, !=, and other
operators:

String word = console.next();

char last = word.charAt(word.length() - 1);

if (last == 's') {

System.out.println(word

+ " is plural.");

}

// prints the alphabet

for (char c = 'a'; c <= 'z'; c++) {

System.out.print(c);

}

13

char vs. int

Each char is mapped to an integer value internally

– Called an ASCII value

'A' is 65 'B' is 66 ' ' is 32

'a' is 97 'b' is 98 '*' is 42

– Mixing char and int causes automatic conversion to

int.

'a' + 10 is 107, 'A' + 'A'

is 130

– To convert an int into the equivalent char, type-cast it.

(char) ('a' + 2) is 'c'
14

char vs. String
"h" is a String, but 'h' is a char (they are

different)

A String is an object; it contains methods.

String s = "h";

s = s.toUpperCase(); // "H"

int len = s.length(); // 1

char first = s.charAt(0); // 'H'

A char is primitive; you can't call methods on it.

char c = 'h';

c = c.toUpperCase(); // ERROR

s = s.charAt(0).toUpperCase(); // ERROR

– What is s + 1 ? What is c + 1 ?

– What is s + s ? What is c + c ?
15

String traversals

We can write algorithms to traverse strings

to compute information.

What useful information might the following

string have?

"GDRGRRGDRRGDLGDGRRRGRGRGGDGDDRDDRRDGDGGD"

16

Data takes many forms
// string stores voters' votes

// (R)EPUBLICAN, (D)EMOCRAT, (G)REEN, (L)IBERTARIAN

String votes =
"GDRGRRGDRRGDLGDGRRRGRGRGGDGDDRDDRRDGDGGD";
int[] counts = new int[4]; // R -> 0, D -> 1, G -> 2, L -> 3

for (int i = 0; i < votes.length(); i++) {

char c = votes.charAt(i);

if (c == 'R') {

counts[0]++;

} else if (c == 'D') {

counts[1]++;

} else if (c == 'G') {

counts[2]++;

} else { // c == 'L'

counts[3]++;

}

}

System.out.println(Arrays.toString(counts));

Output:
[13, 12, 14, 1] 17

Section attendance question

Read a file of section attendance (see next slide):

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya

yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

And produce the following output:
Section 1

Student points: [20, 17, 19, 16, 13]

Student grades: [100.0, 85.0, 95.0, 80.0, 65.0]

Section 2

Student points: [17, 20, 16, 16, 10]

Student grades: [85.0, 100.0, 80.0, 80.0, 50.0]

Section 3

Student points: [17, 18, 17, 20, 16]

Student grades: [85.0, 90.0, 85.0, 100.0, 80.0]

• Students earn 3 points for each section attended up to 20.
18

– Each line represents a section.

– A line consists of 9 weeks' worth of data.

• Each week has 5 characters because there are 5 students.

– Within each week, each character represents one

student.

• a means the student was absent (+0 points)

• n means they attended but didn't do the problems (+1 point)

• y means they attended and did the problems (+3 points)

Section input file

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya

yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

week 1 2 3 4 5 6 7 8 9

student 123451234512345123451234512345123451234512345

section 1

section 2

section 3

Section attendance answer
import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
int section = 1;
while (input.hasNextLine()) {

String line = input.nextLine(); // process one section
int[] points = new int[5];
for (int i = 0; i < line.length(); i++) {

int student = i % 5;
int earned = 0;
if (line.charAt(i) == 'y') { // c == 'y' or 'n'

earned = 3;
} else if (line.charAt(i) == 'n') {

earned = 1;
}
points[student] = Math.min(20, points[student] + earned);

}

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}

System.out.println("Section " + section);
System.out.println("Student points: " + Arrays.toString(points));
System.out.println("Student grades: " + Arrays.toString(grades));
System.out.println();
section++;

}
}

} 20

Data transformations

 In many problems we transform data between forms.

– Example: digits → count of each digit → most frequent digit

– Often each transformation is computed/stored as an array.

– For structure, a transformation is often put in its own method.

Sometimes we map between data and array indexes.

– by position (store the i th value we read at index i)

– implicit mapping (if input value is i, store it at array index i)

– explicit mapping (count 'J' at index 0, count 'X' at index 1)

Exercise: Modify the Sections program to use static

methods that use arrays as parameters and returns.
21

Array param/return answer
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections2 {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
int section = 1;
while (input.hasNextLine()) {

// process one section
String line = input.nextLine();
int[] points = countPoints(line);
double[] grades = computeGrades(points);
results(section, points, grades);
section++;

}
}

// Produces all output about a particular section.
public static void results(int section, int[] points, double[] grades) {

System.out.println("Section " + section);
System.out.println("Student scores: " + Arrays.toString(points));
System.out.println("Student grades: " + Arrays.toString(grades));
System.out.println();

}

...

22

Array param/return answer
...

// Computes the points earned for each student for a particular section.
public static int[] countPoints(String line) {

final int STUDENTS_PER_SECTION = 5;
int[] points = new int[STUDENTS_PER_SECTION];
for (int i = 0; i < line.length(); i++) {

int student = i % STUDENTS_PER_SECTION;
int earned = 0;
if (line.charAt(i) == 'y') { // c == 'y' or c == 'n'

earned = 3;
} else if (line.charAt(i) == 'n') {

earned = 2;
}
points[student] = Math.min(20, points[student] + earned);

}
return points;

}

// Computes the percentage for each student for a particular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

23

