
Topic 23

arrays - part 3 (tallying, text

processing)

"42 million of anything is a lot."

-Doug Burger, circa 2003

(commenting on the number of transistors in

the Pentium IV processor)

As of 2020 processors for

personal computers have, on

the order of billions

of transistors.

What is output when method clicker2 is called?

A. [1, 2][0, 0, 0][1, 2]

B. [1, 2][1, 2][1, 2]

C. [-1, 4][0, 0, 0][0, 0, 0]

D. [-1, 4][0, 0, 0][1, 2]

E. [-1, 4][0, 0, 0][-1, 4]
2

A multi-counter problem

Problem: Write a method mostFrequentDigit

that returns the digit character that occurs most

frequently in a String.

– Example: The String "669260267" contains:

one 0, two 2s, four 6es, one 7, and one 9.

mostFrequentDigit("669260267") returns '6'.

– If there is a tie, return the digit with the lower value.

mostFrequentDigit("5aaaa7135203") returns '3'.

3

A multi-counter problem

We could declare 10 counter variables ...
int counter0, counter1, counter2, counter3, counter4,

counter5, counter6, counter7, counter8, counter9;

But a better solution is to use an array of size 10.

– The element at index i will store the counter for digit

value i.

– Example for 669260267:

– How do we build such an array? And how does

it help?

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

4

Creating an array of tallies

// assume n = 669260267

int[] counts = new int[10];

while (n > 0) {

// pluck off a digit and add to proper counter

int digit = n % 10;

counts[digit]++;

n = n / 10;

}

index 0 1 2 3 4 5 6 7 8 9

value 1 0 2 0 0 0 4 1 0 0

5

Tally solution
// Returns the digit value that occurs most frequently in n.

// Breaks ties by choosing the smaller value.

public static int mostFrequentDigit(int n) {

int[] counts = new int[10];

while (n > 0) {

int digit = n % 10; // pluck off a digit and tally it

counts[digit]++;

n = n / 10;

}

// find the most frequently occurring digit

int bestIndex = 0;

for (int i = 1; i < counts.length; i++) {

if (counts[i] > counts[bestIndex]) {

bestIndex = i;

}

}

return bestIndex;

}

6

Tally Problem
Write a method to pick random numbers

from 0 to 99.

A parameters specifies the number of

random numbers to pick

The method returns the difference between

the number of times the most and least

picked number

Clicker 2: With 1,000,000 numbers what do

you expect the difference to be?

A. 0 B. 1 - 10 C. 11 - 100

D. 101 - 1000 E. > 1000 7

Array histogram question

Given a file of integer exam scores, such as:

82

66

79

63

83

Write a program that will print a histogram of stars

indicating the number of students who earned each

unique exam score.

85: *****

86: ************

87: ***

88: *

91: **** 8

Array histogram answer
// Reads a file of test scores and shows a histogram of the score distribution.

import java.io.*;

import java.util.*;

public class Histogram {

public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("midterm.txt"));

int[] counts = new int[101]; // counters of test scores 0 - 100

while (input.hasNextInt()) { // read file into counts array

int score = input.nextInt();

counts[score]++; // if score is 87, then counts[87]++

}

for (int i = 0; i < counts.length; i++) { // print star histogram

if (counts[i] > 0) {

System.out.print(i + ": ");

for (int j = 0; j < counts[i]; j++) {

System.out.print("*");

}

System.out.println();

}

}

}

}

9

Text processing

reading: 4.3

10

Type char

char : A primitive type representing single characters.

– A String is stored internally as an array of char

String s = "Ali G.";

– It is legal to have variables, parameters, returns of type char

• surrounded with apostrophes: 'a' or '4' or '\n' or '\''

char letter = 'T';

System.out.println(letter); // T

System.out.println(letter + "exas!"); // Texas!

index 0 1 2 3 4 5

value 'A' 'l' 'i' ' ' 'G' '.'

11

The charAt method

 The chars in a String can be accessed using the charAt method.

– accepts an int index parameter and returns the char at that index

String food = "cookie";

char firstLetter = food.charAt(0); // 'c'

System.out.println(firstLetter + " is for " + food);

 You can use a for loop to print or examine each character.

String major = "CS!";

for (int i = 0; i < major.length(); i++) { // output:

char c = major.charAt(i); // C

System.out.println(c); // S

} // !

12

Comparing char values

You can compare chars with ==, !=, and other
operators:

String word = console.next();

char last = word.charAt(word.length() - 1);

if (last == 's') {

System.out.println(word

+ " is plural.");

}

// prints the alphabet

for (char c = 'a'; c <= 'z'; c++) {

System.out.print(c);

}

13

char vs. int

Each char is mapped to an integer value internally

– Called an ASCII value

'A' is 65 'B' is 66 ' ' is 32

'a' is 97 'b' is 98 '*' is 42

– Mixing char and int causes automatic conversion to

int.

'a' + 10 is 107, 'A' + 'A'

is 130

– To convert an int into the equivalent char, type-cast it.

(char) ('a' + 2) is 'c'
14

char vs. String
"h" is a String, but 'h' is a char (they are

different)

A String is an object; it contains methods.

String s = "h";

s = s.toUpperCase(); // "H"

int len = s.length(); // 1

char first = s.charAt(0); // 'H'

A char is primitive; you can't call methods on it.

char c = 'h';

c = c.toUpperCase(); // ERROR

s = s.charAt(0).toUpperCase(); // ERROR

– What is s + 1 ? What is c + 1 ?

– What is s + s ? What is c + c ?
15

String traversals

We can write algorithms to traverse strings

to compute information.

What useful information might the following

string have?

"GDRGRRGDRRGDLGDGRRRGRGRGGDGDDRDDRRDGDGGD"

16

Data takes many forms
// string stores voters' votes

// (R)EPUBLICAN, (D)EMOCRAT, (G)REEN, (L)IBERTARIAN

String votes =
"GDRGRRGDRRGDLGDGRRRGRGRGGDGDDRDDRRDGDGGD";
int[] counts = new int[4]; // R -> 0, D -> 1, G -> 2, L -> 3

for (int i = 0; i < votes.length(); i++) {

char c = votes.charAt(i);

if (c == 'R') {

counts[0]++;

} else if (c == 'D') {

counts[1]++;

} else if (c == 'G') {

counts[2]++;

} else { // c == 'L'

counts[3]++;

}

}

System.out.println(Arrays.toString(counts));

Output:
[13, 12, 14, 1] 17

Section attendance question

Read a file of section attendance (see next slide):

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya

yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

And produce the following output:
Section 1

Student points: [20, 17, 19, 16, 13]

Student grades: [100.0, 85.0, 95.0, 80.0, 65.0]

Section 2

Student points: [17, 20, 16, 16, 10]

Student grades: [85.0, 100.0, 80.0, 80.0, 50.0]

Section 3

Student points: [17, 18, 17, 20, 16]

Student grades: [85.0, 90.0, 85.0, 100.0, 80.0]

• Students earn 3 points for each section attended up to 20.
18

– Each line represents a section.

– A line consists of 9 weeks' worth of data.

• Each week has 5 characters because there are 5 students.

– Within each week, each character represents one

student.

• a means the student was absent (+0 points)

• n means they attended but didn't do the problems (+1 point)

• y means they attended and did the problems (+3 points)

Section input file

yynyyynayayynyyyayanyyyaynayyayyanayyyanyayna

ayyanyyyyayanaayyanayyyananayayaynyayayynynya

yyayaynyyayyanynnyyyayyanayaynannnyyayyayayny

week 1 2 3 4 5 6 7 8 9

student 123451234512345123451234512345123451234512345

section 1

section 2

section 3

Section attendance answer
import java.io.*;
import java.util.*;

public class Sections {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
int section = 1;
while (input.hasNextLine()) {

String line = input.nextLine(); // process one section
int[] points = new int[5];
for (int i = 0; i < line.length(); i++) {

int student = i % 5;
int earned = 0;
if (line.charAt(i) == 'y') { // c == 'y' or 'n'

earned = 3;
} else if (line.charAt(i) == 'n') {

earned = 1;
}
points[student] = Math.min(20, points[student] + earned);

}

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}

System.out.println("Section " + section);
System.out.println("Student points: " + Arrays.toString(points));
System.out.println("Student grades: " + Arrays.toString(grades));
System.out.println();
section++;

}
}

} 20

Data transformations

 In many problems we transform data between forms.

– Example: digits → count of each digit → most frequent digit

– Often each transformation is computed/stored as an array.

– For structure, a transformation is often put in its own method.

Sometimes we map between data and array indexes.

– by position (store the i th value we read at index i)

– implicit mapping (if input value is i, store it at array index i)

– explicit mapping (count 'J' at index 0, count 'X' at index 1)

Exercise: Modify the Sections program to use static

methods that use arrays as parameters and returns.
21

Array param/return answer
// This program reads a file representing which students attended
// which discussion sections and produces output of the students'
// section attendance and scores.

import java.io.*;
import java.util.*;

public class Sections2 {
public static void main(String[] args) throws FileNotFoundException {

Scanner input = new Scanner(new File("sections.txt"));
int section = 1;
while (input.hasNextLine()) {

// process one section
String line = input.nextLine();
int[] points = countPoints(line);
double[] grades = computeGrades(points);
results(section, points, grades);
section++;

}
}

// Produces all output about a particular section.
public static void results(int section, int[] points, double[] grades) {

System.out.println("Section " + section);
System.out.println("Student scores: " + Arrays.toString(points));
System.out.println("Student grades: " + Arrays.toString(grades));
System.out.println();

}

...

22

Array param/return answer
...

// Computes the points earned for each student for a particular section.
public static int[] countPoints(String line) {

final int STUDENTS_PER_SECTION = 5;
int[] points = new int[STUDENTS_PER_SECTION];
for (int i = 0; i < line.length(); i++) {

int student = i % STUDENTS_PER_SECTION;
int earned = 0;
if (line.charAt(i) == 'y') { // c == 'y' or c == 'n'

earned = 3;
} else if (line.charAt(i) == 'n') {

earned = 2;
}
points[student] = Math.min(20, points[student] + earned);

}
return points;

}

// Computes the percentage for each student for a particular section.
public static double[] computeGrades(int[] points) {

double[] grades = new double[5];
for (int i = 0; i < points.length; i++) {

grades[i] = 100.0 * points[i] / 20.0;
}
return grades;

}
}

23

