
Topic 29

classes and objects, part 3

Copyright Pearson Education, 2010

Based on slides by Marty Stepp and Stuart Reges 

from http://www.buildingjavaprograms.com/

“And so, from Europe, we get things such 
as ... object-oriented analysis and design 
(a clever way of breaking up software 
programming instructions and data into 
small, reusable objects, based on certain 
abstraction principles and design 
hierarchies.)”

-Michael A. Cusumano, 
The Business Of Software

1

http://www.buildingjavaprograms.com/


public static void cp(Point p) {

p.translate(2, 3); // add to x, y

p = new Point(4, 7);

}

// client code of cp

Point c1 = new Point(1, 2); // x, y

cp(c1);

System.out.println(c1);

A. (3, 5) 

B. (1, 5)

C. (4, 7)

D. (6, 10)

E. error (syntax error or runtime error) 2



Encapsulation

encapsulation: Hiding implementation details from clients.

– Encapsulation forces abstraction.

• separates external view (behavior) from internal view (state)

• protects the integrity of an object's data

3



Private fields

A field that cannot be accessed from outside the class

private type name;

– Examples:

private int id;

private String name;

Client code won't compile if it accesses private 
fields:
PointMain.java:11: x has private access in Point

System.out.println(p1.x);

^
4



Accessing private state
// A "read-only" access to the x field ("accessor")

public int getX() {

return x;

}

// Allows clients to change the x field ("mutator")

public void setX(int newX) {

x = newX;

}

– Client code will look more like this:

System.out.println(p1.getX());

p1.setX(14);

5



Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
setLocation(x + dx, y + dy);

}
}

6



Benefits of encapsulation

Abstraction between object and clients

Protects object from unwanted access

– Example: Can't fraudulently increase an Account's balance.

Can change the class implementation later

– Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

Can constrain objects' state (invariants)

– Example: Only allow Accounts with non-negative balance.

– Example: Only allow Dates with a month from 1-12.

7



8

The keyword this

reading: 8.3



The this keyword

this : Refers to the implicit parameter inside your 

class.
(a variable that stores the object on which a method is called)

– Refer to a field: this.field

– Call a method: this.method(parameters);

– One constructor this(parameters);

can call another:

9



Variable shadowing

shadowing: 2 variables with same name in same scope.

– Normally illegal, except when one variable is a field.

public class Point {

private int x;

private int y;

...

// this is legal

public void setLocation(int x, int y) {

...

}

– In most of the class, x and y refer to the fields.

– In setLocation, x and y refer to the method's parameters.

10



Fixing shadowing

public class Point {

private int x;

private int y;

...

public void setLocation(int x, int y) 
{

this.x = x;

this.y = y;

}

}

Inside setLocation,

– To refer to the data field x, say this.x

– To refer to the parameter x, say x 11



Calling another constructor
public class Point {

private int x;

private int y;

public Point() {

this(0, 0);// calls (x, y) constructor

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

}

• Avoids redundancy between constructors

• Only a constructor (not a method) can call another constructor
12


