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CS 312 – Final –2013 
 

Your Name____________________________________ 

 

Your UTEID __________________________________  

 
 

Problem  

Number Topic 

Points  

Possible 

Points  

Off 

1 short answer 1 10  

2 ASN 15  

3 short answer 2 10  

4 arrays 1 12  

5 strings 14  

6 critters  19  

7 arrays 2 17  

8 methods 13  

9 2d arrays 20  

TOTAL POINTS OFF:        

   SCORE OUT OF 130:     

 

 
Instructions:  

1. Please turn off your cell phones 

2. There are 9 questions on this test.  

3. You have 3 hours to complete the test. 

4. You may not use a calculator or any other electronic device. 

5. Please make your answers legible.  

6. When code is required, write Java code. 

7. Style is not evaluated when grading. 

8. The proctors will not answer questions. If you feel a question is ambiguous, 

state your assumptions and answer based on those assumptions. 

 

The exam is worth 130 points. Grades will be scaled to 400 for gradebook. 
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1. Short Answer 1 - Expressions. 1 point each, 10 points total.  

For each Java expression in the left hand column, indicate its value in the right hand column.  

You must show a value of the appropriate type. For example, 7.0 rather than 7 for a double and "7" 

instead of 7 for a String. Answers that do not indicate the data type correctly are wrong. 

 

 
A. 3 * 4 + 6 / 3    ________________________________ 

 

 

 

B. 5 * 3 + 12612 / 1000   ________________________________ 

 

 

 

C. 5.0 + 3 / 2    ________________________________ 

 

 

 

D. 23 % 8     ________________________________ 

 

 

 

E. 8 % 23     ________________________________ 

 

 

 

F. 3 + "CA" + "DG"    ________________________________ 

 

 

 

G. 1 + 2 + "CS" + 1 + 2   ________________________________ 

 

 

 

H. 12 * 12 > 100 && 0 != 1  ________________________________ 

 

 

 

 

x is an int variable initialized previously 

I. x != 3 || x != 5    ________________________________ 

 

 

 

 

J. (int) (12.99232 * 10.0)  ________________________________ 
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2. Program Logic - 15 points. Consider the following method. For each of the points labeled by comments and 

each of the assertions in the table, write whether the assertion is always true, sometimes true, or never true at 

that point in the code. Abbreviate always with an A, sometimes with an S and never with an N. If there is a 

forward slash in the cell, do not place an answer in the cell. 

 
// assume data != null 

public static void assertionPractice2(int[] data){ 

 final int LIMIT = data.length - 1; 

 int i = 0; 

 int j = i + 1; 

 int m = 0; 

 if(data.length >= 2) { 

  // POINT A 

  for(i = 0; i < LIMIT; i++) { 

   m = i; 

   for(j = i + 1; j < data.length; j++) 

    if(data[j] < data[i]) { 

     m = j; 

         // POINT B 

    } 

   int t = data[i]; 

   data[i] = data[m]; 

   data[m] = t; 

   // POINT C 

  } // end of out for loop 

 } // end of if(data.length >= 2) 

 // POINT D 

} 
 

Abbreviate always with an A, sometimes with an S and never with an N. 
 

 j == i data[i] is minimum value 

between index i and the 

end of the array 

m == i data.length >= 2 

Point A     

Point B     

Point C  

 

 

 

 

   

POINT D     
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3. Short Answer 2 - 1 point each, 10 points total. For each code snippet state the exact output to the screen.  

If the snippet contains a syntax error or other compile error, answer COMPILE ERROR. 

If the snippet results in a runtime error or exception, answer RUNTIME ERROR. 

 
A. 

 

String[] names = new String[10]; 

System.out.print(names[5].length()); 

 

 

 

B. 

 

int[] data = {2, 2, 1, 7, 1, 2}; 

data[2] = data[0] + data[4] + data[2]; 

System.out.print(data[2] + " " + data.length); 

 

 

 

C.  

 

int[] data2 = new int[10]; 

int index = data2.length / 2; 

System.out.print(data2[index * 4]); 

 

 

For the rest of the short answer questions consider these classes: 

 

public class UTPerson { 

 public String parking() { return "X"; } 

 public String toString() {return "per " + parking(); } 

} 

 

public class Staff extends UTPerson { 

 public String toString() { return "stf " + parking(); } 

} 

 

public class Faculty extends UTPerson { 

 public String parking() { return "F"; } 

 public String toString() { return "fac " + parking(); } 

} 

 

public class Student extends UTPerson { 

 public String study() {return "study"; } 

} 

 

public class EveningStaff extends Staff { 

 public String parking() { return "N"; } 

} 
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D. 

 

Student st1 = new Student(); 

System.out.print(st1.toString()); 

 

 

 

E. 

 

UTPerson ut2 = new Faculty(); 

System.out.print(ut2.toString()); 

 

 

 

F. 

 

Staff st3 = new EveningStaff(); 

System.out.print(st3.toString()); 

 

 

 

G. 

 

EveningStaff es4 = new UTPerson(); 

System.out.print(es4.toString()); 

 

 

 

H. 

 

Student st5 = new Student(); 

System.out.print(st5.study() + " " + st5.toString()); 

 

 

 

I. 

 

Staff st6 = new Staff(); 

System.out.print(st6.toString()); 

 

 

 

J. 

 

Object obj7 = new UTPerson(); 

System.out.print(obj7.toString());  
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4. Arrays 1 - 12 points. Write a method that given an array of ints and a candidate value, returns true if 

the candidate value is the majority element in the array. A candidate value is the majority element in an array if 

more than 50% of the elements in the array equal the candidate value.  

The method does not alter the array in any way. Examples: 

 
array: [1], candidate 1, result -> true 

array: [1], candidate 2, result -> false 

array: [2, 1], candidate 1, result -> false (1 occurs 50% of the time,  

        not more that 50% of the time) 

array: [2, 1, 2, 3, 1], candidate 1, result -> false 

array: [-1, 1, 1, 3, 1], candidate 1, result -> true 

array: [-1, 1, 1, 3, 1], candidate 10, result -> false 

 

You may not use any other Java classes or methods in your answer. 

 
// data.length >= 1, the array data is unchanged by this method 

public static boolean isMajorityElement(int[] data, int candidate) { 
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5. Strings - 14 points. Write a method that prints all the trigrams in a String ignoring all non-letter characters in the 

String. Print out the letter-only trigrams in the order they appear in the String, one per line, to standard output.  

 

A trigram consists of three consecutive characters in a String. For example the String "compute" contains the 

following trigrams: "com", "omp", "mpu", "put", "ute".  

 

In this question you must ignore any non-letter characters in the String.  

For example, the String "t**he c!!-A  {}t"  

has the following letter-only trigrams: "the", "hec", "ecA", "cAt". 

Print out all letter-only trigrams in the order they appear even if this means printing out the same trigram multiple times. 

If the String does not contain any letter-only trigrams, then there is no output. 

 

You may use the String class, the static Character.isLetter(char ch) method that returns true if ch is a 

letter, false otherwise, and System.out.println(). Do not use any other classes or methods in your answer.  

 
public static void printLetterTrigrams(String src) { 
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6. Critters - 19 Points. Write a complete Prowler class that implements the Critter interface from 

assignment 10.  

 

 The constructor has two parameters: an int that specifies the Prowler's number of steps per leg and 

its Color. 

 Prowlers always fight with PAPER. 

 The toString method for Prowlers always returns "P".  

 The getColor method returns the Color sent to the Prowler's constructor. 

 Prowlers generally move in an up and down pattern. They start by moving NORTH the number of steps 

specified in the constructor. For example, if the number of steps per leg is 5, the Prowler will 

respond with NORTH for the first 5 calls to getMove. A Prowler then reverses its direction and 

moves SOUTH the same number of steps before reversing direction to NORTH, and so forth. 

 

There is special case for movement. If the CritterInfo object indicates there is another Critter 

of any type EAST or WEST of the Prowler, then the Prowler moves EAST or WEST towards the 

other Critter. If there is a critter to the EAST and WEST the Prowler moves EAST. 

 

If a Prowler moves EAST or WEST instead of NORTH or SOUTH its step count is reset. For example if 

a Prowler's steps per leg is 5 and it has taken 2 steps to the SOUTH and then it moves EAST, the 

number of steps taken to the SOUTH is reset to zero and the Prowler will move to the SOUTH 5 

times unless interrupted by another EAST or WEST move. The overall steps per leg never changes. 

 
public interface Critter { 

    // methods to implement 

    public int fight(String opponent); 

    public Color getColor(); 

    public int getMove(CritterInfo info); 

    public String toString(); 

 

    // Definitions for the ints NORTH, SOUTH, EAST, WEST, CENTER,  

    // ROCK, PAPER, and SCISSORS 

} 

 

public interface CritterInfo  { 

    /* Takes a direction as a parameter (one of the constants NORTH, 

       SOUTH, EAST, WEST or CENTER from the Critter interface). Method 

       returns the display String for the critter that is one unit away 

       in that direction (or "." if the square is empty).  

       If multiple critters occupy this space, returns a randomly chosen 

       one of them.*/ 

    public String getNeighbor(int direction); 

 

 // other methods not shown 

} 

 

Complete your Prowler class on the next page. Assume the Color class has been imported correctly. 
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// complete the Prowler class here: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
// more room for the Prowler class on the next page if needed  
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// more room for Prowler class if needed  
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7. Arrays 2 - 17 Points. Write a method that given an array of ints and a min and max value, creates and returns a new 

array that contains only the values from the original array that are greater than or equal to min AND less than or equal to 

max. The relative order of the elements in the returned array is the same as the original array. The original array is not 

altered. You may not use any other Java classes or methods in your answer except arrays. Examples: 

 
[-5, -5, -5, 100, 100, 0], min = 1, max = 10, returned array -> [] 

[1, 5, 1, 2, 5, 5, 3, 1], min = 1, max = 4, returned array -> [1, 1, 2, 3, 1] 

[1, 6, 10, 12, -10], min = -20, max = 30, returned array -> [1, 6, 10, 12, -10] 

 
// Assume data != null and min <= max. The array data is unchanged by this method 

public static int[] getValuesInRange(int[] data, int min, int max) {  



                   CS 312 – Final – Spring 2013  12 

8. Methods - 13 points.  

 

A. 4 points. Write a method named inbounds. The method has three parameters: a 2d array of chars and 

two ints that specify a row and column for a possible cell. The method returns true if the row and column 

specify a cell that is inbounds (exists) in the given 2d array of chars or false if the row and column specify a 

cell that is out of bounds. (Doesn't exist in the 2d array of chars).  

 

Complete the inbounds method below.  
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B. 9 points. Write a method named countNeighbors. The method has 4 parameters: a 2d array of chars, 

two ints that specify the row and column of a cell, and a target char.  

 

Assume the row and column are inbounds. 

 

The method returns the number of adjacent cells to the specified cell (given by the row and column) that equal 

the target char. A cell has at most four adjacent cells: the cells above, below, left, and right. Diagonal cells are 

not considered adjacent cells for this question.  

 

The specified cell will be inbounds, but it may be an edge or corner cell that has only 2 or 3 adjacent cells.  

Call the inbounds method from part A to check if a potential adjacent cell actually exists to avoid array 

index out of bounds exceptions. Do not rewrite the functionality of inbounds here in part B. 
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9. 2D arrays and simulation -  20 points. Fire!! Write a method that simulates the spread of a forest fire.  

 

 The forest is represented by a 2d array of chars.  

 Each element in the 2d array is either 'X', 'F', 'T', or 'O'. 

 'X' represents cells that were on fire but have burned out. 

 'F' represents cells that are on fire. 

 'T' represents cells with trees that have not caught fire. 

 'O' represents open cells with no plants. These cells never catch fire. 

 

Write a method that takes the current state of the forest and fire, represented by a 2d array of chars, and 

determines the next step of the forest fire in the simulation. 

 

 Cells that are 'X' or 'O' do not change from one step of the simulation to another. 

 Cells that are on fire ('F') have a 75% chance of burning out and becoming 'X' in the next step of the 

simulation. 

 Cells with trees ('T') have a 0% chance of catching fire if zero adjacent cells are on fire. 

 Cells with trees ('T') have a 50% chance of catching fire if one adjacent cell is on fire. 

 Cells with trees ('T') have a 100% chance of catching fire if two or more adjacent cells are on fire. 

 

A cell has at most 4 adjacent cells: up, down, left, right. 

 

Cells in the corners only have 2 adjacent cells. 

 

Cells on the edges (but not the corners) only have 3 adjacent cells. 

 

Your method must simulate that all the changes occur at once. 

 

Call the countNeighbors method from question 8.B as appropriate.  

Do not rewrite the functionality of countNeighbors in this question.  

 

The only other Java class and method you may use are arrays and the Math.random() method. 

 

Complete the following method on the next page: 

 
/* forest is not null.  

 forest is a rectangular matrix, all rows have the same number of columns. 

 All elements of forest are 'X', 'F', 'T', or 'O'. 

 The method returns a new 2d array of chars that represents the forest in 

  the next step of the simulation. 

*/ 

public static char[][] getNextStep(char[][] forest) { 

 

COMPLETE THIS METHOD ON THE NEXT PAGE. 
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public static char[][] getNextStep(char[][] forest) { 

 

 

 

 


