Topic 25
Tries

“In 1959, (Edward) Fredkin recommended &
that BBN (Bolt, Beranek and Newman, now A
BBN Technologies) purchase the very first
PDP-1 to support research projects at
BBN. The PDP-1 came with no software
whatsoever.

Fredkin wrote a PDP-1 assembler called FRAP (Free
of Rules Assembly Program);”

Tries were first described by René de |la Briandais in
File searching using variable length keys.

Clicker 1

» How would you pronounce “Trie”
“tree”

“tri — ee”

Ctry”

. “tiara”

something else

moow»

CS314 Tries 2

Tries aka Prefix Trees

» Pronunciation:
» From retrieval

» Name coined by Computer Scientist
Edward Fredkin

» Retrieval so “tree”

> ... but that is very confusing so most people
pronounce it “try”

CS314 Tries 3

Predictive Text and AutoComplete

» Search engines and texting applications
guess what you want after typing only a few
characters

Hel

hello

hellboy

hello fresh

helen keller

helena christensen
hello may

hell or high water
hello neighbor
helzberg

help synonym

AutoComplete

> So do other programs such as IDEs

String name = "Kelly J";
name.§|

Whi 1e @ substring(int beginindex, int endindex) : String - String - 0.11% *
@ split(String regex) : String[] - String
@ split(String regex, int limit) : String[] - String
@ startsWith(String prefix) : boolean - String
t‘ @ startsWith(String prefix, int toffset) : boolean - String
= | @ subSequence(int beginindey, int endindex) : CharSequence - Sti
% @ substring(int beginindex) : String - String

CS314 Tries 5

Searching a Dictionary

» How?

» Could search a set for all values that start
with the given prefix.

» Naively O(N) (search the whole data
structure).

» Could improve if possible to do a binary
search for prefix and then localize search to
that location.

CS314 Tries 6

Tries

> A general tree
> Root node (or possibly a list of root nodes)

*» Nodes can have many children
— not a binary tree

> In simplest form each node stores a
character and a data structure (list?) to refer
to its children

» Stores all the words or phrases
in a dictionary.
» How?

CS314 Tries 7

René de la Briandais Original Paper

Ist Lefter Table ™ TF
/ \
2nd Letter Tables ﬂ\ T’/A\O\
-3rd Letter Tables "T“ v ’T‘/é—? XU
4th Lefter Tables — D . ﬁ'T '—L fT‘/ ’L - T!T
5th Letter Tables ":T ’T\/ \’5 :\? %
6th Lefter Tables — fl_\ ’_L ’iii ’L
Tth Letter Tables /_’:
*AH entrigs of any one table are covered by a single arc (—),
Fig. 1—Formation of a set of tables.
CS314 Tries 8

CS314

Tries

CS314

Tries 10

Fall 2022 - Ryan P.

Created with Procreate: https://procreate.art/

CS314

+3rd Letter Tables

[st Letter Table *

2nd Letter Tables

4th Letter Tables
Sth Letter Tables

6th Letter Tables

Tth Letter Tables

*Alf entries of any one table are covered by a single arc (—J,

Fig. 1—Formation of a set of tables.
Tries 12

Ist [etter Table *

2nd Letter Tables

-3rd Letter Tables
4th Letter Tables
S5th Letter Tables

6th Letter Tables

Tth Letter Tables

*All entries of any one table are covered by a single arc (—),

Fig. 1—Formation of a set of tables.

CS314 Tries 13

Ist Letter Table™

2nd Letter Tables

-3rd Letter Tables
4th Letter Tables
S5th Letter Tables

6th Letter Tables

Tth Letter Tables

*Alf entries of any one table are covered by a single arc (—,

Fig. 1—Formation of a set of tables.
CS314

Tries 14

Clicker 2

> Is “fast” in the dictionary represented by this

Trie? st Letter Table /ﬁ\
A' NO 2nd Letter Tables /ﬂ\ /I//A\O\
B- YeS -3rd Letter Tables '1}7 rl(l‘ T /g_T TT
C. It depends . Letter Tobies — fTo T 2w
S5th Letter Tables T 'i' l[) - T ll)
6th Lefter Tables - - = T'?\ -

Tth Letter Tables
*AH entries of any one table are covered by a single arc (—},

Fig. 1—Formation of a set of tables.

CS314 Tries 15

Clicker 3

> Is “fist” in the dictionary represented by this

Trie?
/ \

A. No
2nd Letfter Tables A0

Ist Letter Table

l—c

TAOQ
B. Yes P N e \
“3rd Letter Tables N U T ST
C. It depends N A1 /]
4th Letter Tables — D NCT T T T
VAN
Sth Letter Tables ‘Y 1|' T - fl-:
6th Letter Tables i — ’T\
Tth Letter Tables -
*AH entries of any one table are covered by a single arc (—,
Fig. 1—Formation of a set of tables.
CS314 16

—

Tries
> Another example
of a Trie

» Each node stores:
— A char

— A boolean
indicating if the

string ending at

that node is a word 0
— A list of children :

CS314 Tries

Predictive Text and AutoComplete

» As characters are entered
we descend the Trie

» ... and from the current
node ...

» ... we can descend to
terminators and leaves to
see all possible words
based on current prefix

» b, e, e -> bee, been, bees

CS314 Tries 18

Tries
» Stores words and
phrases.

— other values
possible, but typically
Strings
> The whole word or
phrase is not actually
stored in a
single node.

> ... rather the path in
the tree represents
the word.

K
So b

A

()
-
@

been

Implementing a Trie

public class Trie {

private TNode root;
private int size; // number of words

private int numNodes;

public Trie() {
new TNode () ;
numNodes = 1;

root =

CS314 Tries 20

TNode Class

private static class TNode {
private boolean word;
private char ch;
private LinkedList<TNode> children;

» Basic implementation uses a LinkedList of
TNode objects for children

» Other options?
— ArrayList?
— Something more exotic?

CS314 Tries 21

Basic Operations

> Adding a word to the Trie
» Getting all words with given prefix
» Demo in IDE

CS314 Tries 22

Compressed Tries

» Some words, especially long ones, lead to a
chain of nodes with single child, followed by

single child: /Q
\
(5
OO

Compressed Trie

» Reduce number of nodes, by having nodes
store Strings

> A chain of single child followed by single
child (followed by single child ...) is
compressed to a single node with that String
» Does not have to be a chain that terminates
in a leaf node
— Can be an internal chain of nodes

CS314 Tries 24

CS314

Original, Uncompressed

Tries

Compressed Version
OGO

8 fewer nodes compared to uncompressed version
s—t—-o-c-k

CS314 Tries 26

Data Structures

» Data structures we have studied

— arrays, array based lists, linked lists, maps, sets,

stacks, queues, trees, binary search trees,
graphs, hash tables, red-black trees, priority
queues, heaps, tries
» Most program languages have some built in
data structures, native or library

> Must be familiar with performance of data

structures
— best learned by implementing them yourself

CS314

Heaps

27

Data Structures
> We have not covered every data structure

—
Arrays |[edit source | edit s

Abstract data types |[edit source | edit bet= | s Armay Heaps [edit source | edit Graphs [edit source | edit bet=]
« Bidirectional map
» Container « Heap
o Bit amay « Binary heap « Graph
» Map/Associative array/Dictionary « Bit field Wk Hap p!)
s Multimap e I heap e Adjacency list
» List « Fibonacci heap s Adjacency matrix
s Sel o AF-heap « Graph-structured stack
23 heap
» Multiset S ¢ Scene graph
= Priority queue « Pairing heap & Binary decision diagram
» Queue * Leftist heap « Zero suppressed decision diagram
o Trezp -
» Deque Gl e And-inverter graph
» Stack Skew heap s Directed graph
« String * Temary heap e Directed acyclic graph
« Tree % Doy hean « Propositional directed acyclic graph
« Graph Trees [editsource|edit: Multigraph
In these data structures eac! o Hypergraph
Some properties of abstract data types:
o Variable-length array . ;
T T . Other [edit source | edit b=t
Structure | Stable Unique|Cells per Node Lists [edit source | edit bet=]
I I [« Doubly linked list s Lightmap
Bag (mult\set).no i _1 o Linked list ray -
Self-organizing list * Winged edge
St [e -1 o Skip list « Doubly connected edge list
List yes |no 1 « Unrolled linked list » Quad-edge
Map no yes 2 + Vst e Routing table

o Xor linked list
. Zipper ¢ Symbol table
“"Stable" means that input order is retained. Other stru « Doubly connected edge list

= Difference list

http://en.wikipedia.org/wiki/List_of data_structures

Data Structures

> deque, b-trees, quad-trees, binary space
partition trees, skip list, sparse list, sparse
matrix, union-find data structure, Bloom
filters, AVL trees, 2-3-4 trees, and more!

> Must be able to learn new and apply new
data structures

CS314 Heaps

29

