
Structure

MAGIC	NUMBER
Why	do	we	include	a	magic	number?	We	
want	to	make	sure	this	is	actually	a	
huffman	compressed	file	before	we	start	
decompression.	To	do	this,	we	chose	an	
arbitrary	integer	and	declared	this	to	be	
the	"Magic	Number".	We	say	that	any	file	
that	starts	with	the	value	MUST	be	a	
huffman	compressed	file.	Why	can	we	do	
this?	Since	an	int	is	32	bits	long	and	each	
bit	can	hold	either	a	1	or	a	0,	there	is	a	232
chance	that	another	file	that	is	not	a	
huffman	compressed	file	will	happen	to	
start	with	the	exact	same	32	bits	as	our	
huffman	"magic	number".	That's	a	
0.00000000002328%	chance	that	a	random	
file	will	be	mistaken	as	a	huffman	
compressed	file.	I	like	those	odds	:)

32	bits
HEADER	CONTENT
See	below	for	
more	information

32	bits

HEADER	FORMAT
Why	do	we	need	to	include	a	header	
format	constant?	We	need	to	know	
exactly	which	type	of	header	content	is	
coming	next	so	we	can	read	the	
information	properly	and	rebuild	the	
huffman	code	tree	correctly.

Beginning	of	the	file

COMPRESSED	DATA

PEOF
When	we're	eventually	decompressing	this	
file,	it	actually	can	become	almost	
impossible	to	tell	when	we've	read	the	last	
code	to	decode	the	last	character/byte.	To	
solve	this	problem,	we	invent	a	code	for	a	
fake	value	(256)	and	use	this	to	signal	to	our	
program	that	all	the	meaningful	bits	of	the	
file	have	been	read.	If	we	did	not	do	this,	we	
would	likely	end	up	trying	to	decode	the	bits	
used	to	pad	the	file	(see	padding	box)	and	
would	result	in	exceptions	being	thrown	in	
our	code.

Extra	Padding	of	0's
(the	BitOutputStream	will	handle	this	for	
you)	
Why	is	there	an	extra	padding	of	0s?	
Computer	systems	are	designed	so	that	all	
files	have	to	be	in	8	bit	(1	byte)	increments.	
Depending	on	the	lengths	and	frequencies	
of	the	codes	generated	in	compression,	we	
might	be	missing	a	few	bits	at	the	end.	The	
BitOutputStream	will	add	extra	0's	after	you	
close	it	and	pad	the	file	out	to	a	size	that	is	a	
multiple	of	8	bits.

End	of	the	file

Header	Formats/Content

Store	Counts	Format
There	are	256	(28)	different	values	we	can	encode

bits	per	byte

to	remake	the	tree,	we	need	to	know	the	frequency	of	each	value

We	can	store	them	in	our	header	like	an	array	of	length	256	(alphabet	size)

…
…

32	bits 64 96 8128 8160 8192128

"frequencies[0]"

Represents	the	
frequency	of	the	
value	0

"frequencies[1]"

"frequencies[2]"

"frequencies[3]"

"frequencies[254]"

"frequencies[255]"

Note:	
We	do	not	include	the	PEOF	frequency	
in	the	store	counts	format	because	we	
know	for	sure	that	it	will	always have	a	
frequency	of	1.	It	would	be	a	waste	of	
space	to	include	it.	You	will,	however,	
have	to	manually	add	this	frequency	to	
the	priority	queue	yourself	when	
decompressing	or	you	will	not	generate	
the	proper	codes

Store	Tree	Format
Instead	of	storing	frequencies	(because	this	can	take	quite	a	bit	of	memory	when	a	lot	of	the	values	
might	have	frequencies	of	0)	we	can	simply	pass	along	the	actual	huffman	code	tree!

We	can	use	0	to	represent	a	non-leaf	node
We	can	use	1	to	represent	a	leaf	node which	stores	a	value

A	leaf	node	represents	a	value	that	was	compressed
9	bits	are	used	to	store	the	value	(not	frequency)	of	that	tree	node

Why	9?	We	have	256	possible	values	that	we	read	in	from	the	file	+	1	extra	code	for	the	
PEOF.	That	means	there	are	a	total	of	257	values	that	a	node	could	store	and	this	fits	into	a	
minimum	of	9	bits.

We	start	by	using	one	int	to	write	out	the	number	of	bits	that	the	tree	representation	takes	up	([num	
leaf	nodes	*	9]	+	size	of	tree).	Then	the	nodes	and	leaf	values	are	stored	using	a	pre-order	traversal.

Ex.	00000000		00000000		00000000		01000001		0		0		0		0		1		000100011		1		100000000		1		001000001		0		
1		001010011		1		001000010		1		000100000

1
32:"	"

011
66:B

010
83:S

001
65:A

0001
256:PEOF

0000
35:#

Pseudo-code	for	reading	in	the	store	tree	header	(use	recursive	helper):
Main method:

Read in 32 bits (BITS_PER_INT) as the size of the tree
Set the root equal to the result of the recursive method call

Recursive helper:
Read in 1 bit
If the bit is 0:

This is an internal node
Make a new empty node
Set the left child to result of call to recursive helper
Set the right child to result of call the recursive helper
Return the new node

If the bit is a 1:
This is a leaf node
Read in 9 more bits (this is the value of the node)
Make a new node w/ this value and no child nodes
Return the new node

Else:
We ran out of bits while trying to form our huffman code tree
This means something is incorrect about format of the input 
file
Throw an exception/show an error/report catastrophic failure

Not	in	the	ascii	table.	This	
value	is	an	abstraction	that	
we	created!

*	note	that	the	<number>:<letter>	in	
each	node	both	represent	the	value	
of	the	node.	They	mean	the	same	
thing.	*

32	bits	=	the	size	of	an	integer
*	Use	the	BITS_PER_INT	constant

provided	*

smallest	possible	
value	a	file	could	
have

largest	possible	
value	a	file	could	
have

size	of	tree	representation

About	CS314	Huffman	Compressed	File	(.hf)
12/3/20 00:01


