About CS314 Huffman Compressed File (.hf)

12/3/20

St

00:01

ructure

MAGIC NUMBER

Why do we include a magic number? We
want to make sure this is actually a
huffman compressed file before we start
decompression. To do this, we chose an
arbitrary integer and declared this to be
the "Magic Number". We say that any file
that starts with the value MUST be a
huffman compressed file. Why can we do
this? Since an int is 32 bits long and each
bit can hold either a 1 or a 0, there is a 232
chance that another file that is not a
huffman compressed file will happen to
start with the exact same 32 bits as our
huffman "magic number". That's a
0.00000000002328% chance that a random
file will be mistaken as a huffman
compressed file. | like those odds :)

32 bits

HEADER FORMAT

Why do we need to include a header
format constant? We need to know
exactly which type of header content is
coming next so we can read the
information properly and rebuild the
huffman code tree correctly.

32 bits

32 bits = the size of an integer
* Use the BITS_PER_INT constant
provided *

Beginning of the file —_—

v

HEADER CONTENT
See below for
more information

COMPRESSED DATA

End of the file

6

PEOF

When we're eventually decompressing this

file, it actually can become almost

impossible to tell when we've read the last
code to decode the last character/byte. To

solve this problem, we invent a code for a
fake value (256) and use this to signal to our

program that all the meaningful bits of the
file have been read. If we did not do this, we
would likely end up trying to decode the bits
used to pad the file (see padding box) and
would result in exceptions being thrown in

Extra Padding of O's

(the BitOutputStream will handle this for
you)

Why is there an extra padding of 0s?
Computer systems are designed so that all
files have to be in 8 bit (1 byte) increments.
Depending on the lengths and frequencies
of the codes generated in compression, we
might be missing a few bits at the end. The
BitOutputStream will add extra O's after you
close it and pad the file out to a size that is a
multiple of 8 bits.

our code.

Header Formats/Content

Store Counts Format
There are 256 (27) different values we can encode

Note:

We do not include the PEOF frequency
in the store counts format because we
know for sure that it will always have a
frequency of 1. It would be a waste of

space to include it. You will, however,
32 bits 64 96 128 8128 8160 3192 have to manually add this frequency to

the priority queue yourself when
T 4 T 4‘ T X decompressing or you will not generate

bits per byte

to remake the tree, we need to know the frequency of each value

We can store them in our header like an array of length 256 (alphabet size)

the proper codes

"frequencies[0]" "frequencies[2]" "frequencies[254]"

"frequencies[255]"

"frequencies[1]" "frequencies[3]"

Represents the
frequency of the
value 0

Store Tree Format

Instead of storing frequencies (because this can take quite a bit of memory when a lot of the values
might have frequencies of 0) we can simply pass along the actual huffman code tree!

We can use 0 to represent a non-leaf node
We can use 1 to represent a leaf node which stores a value
ﬁA leaf node represents a value that was compressed
9 bits are used to store the value (not frequency) of that tree node
L_»Why 9? We have 256 possible values that we read in from the file + 1 extra code for the
PEOF. That means there are a total of 257 values that a node could store and this fits into a
minimum of 9 bits.

We start by using one int to write out the number of bits that the tree representation takes up ([num
leaf nodes * 9] + size of tree). Then the nodes and leaf values are stored using a pre-order traversal.

size of tree representation
Ex.'00000000 00000000 00000000 01000001'0 l 0 I 1 000100011 1 100000000 1 001000001 O

[l pOTOEO0E il 007000040 1 000100000

e
N

VAN

001
65:A

/

N
® @

VAN

0000 0001 * note that the <number>:<letter> in
35:# 256:PEOF each node both represent the value
—
of the node. They mean the same
thing. *
Not in the ascii table. This
value is an abstraction that
we created!
ASCII| Table
Sma”est pOSSible Dec Hex Oct Char |Dec Hex Oct Char |[Dec Hex Oct Char |Dec Hex Oct Char

value a file could

have

[space] 64 40 100 @ 96 60 140
33 21 41 ! 65 41 101 A 97 61 141
34 22 42 " 98 62 142
67 4 3 99 63 143
68 44 104 D 100 64 144
69 45 105 E 101 65 145
70 46 106 F 102 66 146
71 47 107 G 103 67 147
72 48 110 H 104 68 150
73 49 111 | 105 69 151
74 4A 112 J 106 6A 152
75 4B 113 K 107 6B 153
14 44 2C 54 , 76 4C 114 L 108 6C 154
15 45 2D 55 - 77 4D 115 M 109 6D 155
16 46 2E 56 . 78 4E 116 N 110 6E 156
79 4F 117 [¢] 111 6F 157
80 50 120 P 112 70 160
81 51 121 Q 113 71 161
82 52 122 R 114 72 162
115 73 163
84 5 124 T 116 74 164
85 55 125 U 117 75 165
86 56 126 \ 118 76 166
87 57 127 w 119 77 167
88 58 130 X 120 78 170
89 59 131 Y 121 79 171
32 58 3A 72 : 90 5A 132 z 122 7A 172
33 59 3B 73 H 91 5B 133 [123 7B 173
92 5C 134 \ 124 7C 174
93 5D 135] 125 7D 175
94 5E 136 ~ 126 7E 176
95 5F 137 _ 127 7F 177

CONOOULAEWNFEO
w
<
N
v
n
w
+ = cpeulg =

TMOUOOTPOONOU A WNRO
=
o
o
o
N
®
[V
o

e
~ o
e
o
[SEN)
= o
BB
© ™
ww
= o
oo
[=R<)

N

ES

[

N

w

rS

o

S
CONOUVAWNRE O™

N
w
e e T
OWPOONOOUAWN
N
~
n
o
w
~
)
~
| ¥~ ~NKXsS<CTUW-0TOS3I AT "JT@r0anoTo -

29 1D 35 61 3D 75
30 1E 36 62 3E 76
31 1F 37 63 3F 77

~VoA

Extended ASCIl Codes

122 ¢ 144 E 160 & 176 192 L 208 & 24 240

129 145 = 161 i 177 193 L 20 = 25 B 241

130 ¢ 146 E 162 6 172 B 194 + 210 2 T 242 >

131 & 147 6 163 o 179 | 195 |} 211 & 27 x M3 <

132 & 142 o 164 & 180 196 -~ 212 & 22 . 24 |

133 & 19 o 165 N 131 4 197 4+ 213 29 & 245

134 & 150 @ 166 ¢ 122 4 198 p 214 o 23 4 246

135 ¢ 151 o 167 ° 183 199 | 215 § 231 ¢ 247

136 & 152 v 168 , 184 4 00 & 26 4 32 ¢ 24

137 ¢ 153 O 169 -~ 135 4 0 ¢ 27 233 ® 249

138 & 154 U 70 - 18 | MW A& A3 24 0 2%

139 1§ 155 ¢ 171 % 187 5 2 ¢ 29 § 235 ¢ 251 o

140 i 156 ¢ 172 % 188 4 04 F 20 g 2% o 252 =

141 i 157 % 1713 189 4 W5 = 221 | 37 § 253 ¢

142 A 158 § 174 « 190 4 W6 $ m | 1 . 254 ® largest possible
43 A% g 75 190 4 W7 a3 W 2% o 255 & \ag|ye a file could

have

Pseudo-code for reading in the store tree header (use recursive helper):
Main method:
Read in 32 bits (BITS_PER _INT) as the size of the tree
Set the root equal to the result of the recursive method call
Recursive helper:

Read in 1 bit

If the bit is o:
This is an internal node
Make a new empty node
Set the left child to result of call to recursive helper
Set the right child to result of call the recursive helper
Return the new node

If the bit is a 1:
This is a leaf node
Read in 9 more bits (this is the value of the node)
Make a new node w/ this value and no child nodes
Return the new node

Else:
We ran out
This means
file
Throw an exception/show an error/report catastrophic failure

of bits while trying to form our huffman code tree
something is incorrect about format of the input

