
1. Detention
Program Name: boring.java Input File: <none>

While in your high school programming class, you were recently reprimanded for talking too much and at the wrong
time (as usual). The instructor has given you after school detention and tasked you with writing, “I will not talk
during this boring class.” two hundred times! Luckily, a substitute teacher is overseeing your punishment and you
manage to convince him that your instructor allows students to write programs to meet these requirements.

Now all you have to do is write the program to get out of detention.

Input
There is no input for this problem.

Output
Print the line, “I will not talk during this boring class.” two hundred times.

Example Output To Screen (first 10 lines only)
I will not talk during this boring class.
I will not talk during this boring class.
I will not talk during this boring class.
I will not talk during this boring class.
I will not talk during this boring class.
I will not talk during this boring class.
I will not talk during this boring class.
I will not talk during this boring class.
I will not talk during this boring class.
I will not talk during this boring class.

UIL State CS Hands-On Problem Set 2007 Page 1

2. Capitals
Program Name: capital.java Input File: capital.in

Your Geography class is currently studying Europe, and the next test covers the capital cities. The test will be 20
fill-in-the-blank questions. Each question will be in one of the following two formats:

Format 1 The capital city of <country> is _____.
Format 2 The capital city of _____ is <city>.

Where placeholders <country> and <city> are provided, and you must fill in the blanks. Here is a copy of your
study sheet (No, it doesn't cover all of Europe, but you know it will be enough for your test):

Capital Country Capital Country
Dublin Ireland London UK
Lisbon Portugal Madrid Spain
Andorra Andorra Paris France
Bern Switzerland Vaduz Liechtenstein
Brussels Belgium Berlin Germany
Vienna Austria Rome Italy
Valletta Malta Oslo Norway
Stockholm Sweden Copenhagen Denmark
Vatican City Vatican Budapest Hungary
Athens Greece Helsinki Finland
Monaco Monaco Sarajevo Bosnia Herzegovina

You have little interest in Geography and are an accomplished programmer. To skirt the opportunity of genuine
learning, you decide to take advantage of your existing abilities and program your calculator to fill in the blanks.

Input
Input will consist of 20 lines, each of the format given in the description above. Blanks will consist of 5 consecutive
underscore characters ('_').

Output
Output will exactly mirror the input except that the blanks will be replaced with the correct country or capital names
from the study sheet.

Example Input File (first 3 lines only)
The capital city of Italy is _____.
The capital city of _____ is Helsinki.
The capital city of Bosnia Herzegovina is _____.

Example Output To Screen (first 3 lines only)
The capital city of Italy is Rome.
The capital city of Finland is Helsinki.
The capital city of Bosnia Herzegovina is Sarajevo.

UIL State CS Hands-On Problem Set 2007 Page 2

3. The Chase
Program Name: chase.java Input File: chase.in

Cats chase mice, but who will win?

Simulate a cat and a mouse in a maze. Each is facing in a cardinal direction (north, east, west, south) and takes turns
moving, with the mouse going first. Both the cat and the mouse can see indefinitely far in a straight line in the
direction which they are facing.

The mouse moves according to the following rules:
1. If the mouse sees the cat at the beginning of its move, he will turn 90 degrees counterclockwise and then run

straight as far as possible until he hits a wall or successfully exits the maze (yay!).
2. If the mouse does not see the cat at the beginning of its move, he will run straight as far as possible until he

hits a wall or successfully exits the maze (yay!).
3. Whenever the mouse hits a wall, he turns 90 degrees counterclockwise and waits for the cat to take his turn.

The cat moves according to the following rules:
1. If the cat sees the mouse at the beginning of his move, he runs and eats it immediately (yum!).
2. If the cat saw the mouse run by, he moves to the last position where he saw the mouse, turns to face the

direction the mouse was moving, and waits for the mouse to take his turn.
3. If neither 1 nor 2 apply, the cat will run straight until he hits a wall or arrives at the edge of the maze. He

then stops, turns 90 degrees clockwise, and waits for the mouse to take his turn.

Input
The first line of the input file will contain a single integer, n, indicating the number of mazes that need analysis.
Each maze in the input begins with a line containing two integers, c and r, indicating the size of the maze. The
following r lines each contain c printable characters that form the maze, each of which is one of:

'#' - wall
'.' - empty floor
'n', 'e', 's', 'w' – A lower-case letter representing the mouse and the direction it is facing.
'N', 'E', 'S', 'W' – An upper-case letter representing the cat and the direction it is facing.

Each maze has exactly one cat and one mouse.

Each dimension of each maze is in the range 1 to 20, inclusive.

Output
For each maze in the input, determine whether the mouse escapes, is caught, or if the chase continues forever. If the
mouse escapes, print, “The mouse escapes in x moves.” where x is the number of moves made by the mouse. If the
mouse is caught, print, “The mouse is caught in y moves.” where y is the number of moves made by the cat to catch
the mouse. Otherwise, since the chase continues without end, print, “The chase never ends.”

UIL State CS Hands-On Problem Set 2007 Page 3

Example Input File
3
6 5
######
#....#
#.##.#
#E..n#
#.####
6 5
######
#....#
#.##.#
#...W#
#n####
6 5
######
#....#
#.##.#
.E..n#
######

Example Output To Screen
The mouse escapes in 3 moves.
The mouse is caught in 2 moves.
The chase never ends.

UIL State CS Hands-On Problem Set 2007 Page 4

4. Decryptonomicon
Program Name: decrypt.java Input File: decrypt.in

Encryption can be simple, complex, or just plain annoying. Luckily, for this problem, the encryption is very
straightforward. Here is the encryption algorithm:

For each line of text to encrypt
For each character of the line to encrypt

determine the 8-bit binary ASCII value of the character
flip all the bits in the ASCII value (i.e., 0 becomes 1 and 1 becomes 0)
convert the bit-flipped ASCII value to a hexadecimal representation
print the hexadecimal value to standard output followed by a single space

print a newline character ('\n') to standard output

For example, the ASCII value of the character 'A' is 65, which is 0100 0001in binary. Flipping the bits gives you
1011 1110, which is represented as 'be' in hexadecimal.

Not so luckily, you have to write a program to reverse the encryption process.

Input
The first line of the input file will contain a single integer, n, indicating the number of lines of encrypted input to
decrypt.

Output
For each encrypted input line, output the decrypted line.

Example Input File
2
b7 9a 93 93 90 df a8 90 8d 93 9b de
b6 df 90 88 91 df cd df 9c 9e 8b 8c d1

Example Output To Screen
Hello World!
I own 2 cats.

UIL State CS Hands-On Problem Set 2007 Page 5

5. Disco Stew
Program Name: disco.java Input File: disco.in

Disco Stu is a cannibal and wants to capture you for his next batch of, you guessed it, disco stew.

You must escape the dance floor, but the rotating colors cast by the disco ball make it difficult to move. In fact, you
can only reliably move within a region of the floor that is all one color. If you want to move further, you must wait
for the disco ball to rotate (90 degrees clockwise) and try again.

Note that a colored 'region' of the floor only consists of same-colored squares that are horizontally or vertically
adjacent. Regions that are only diagonally adjacent (i.e., they meet at a corner) are separate.

Input
The first line of the input file will contain a single integer, n, indicating the number of discos that you must attempt to
escape from. For each disco, the first line of the input will have two integers, x and y, representing the row and
column of the dance floor that you start on (rows are numbered 1-9 from top to bottom, columns are numbered 1-9
from left to right). The next nine lines in the input represent the dance floor and its coloring with the disco ball in its
starting position. Note that all discos are 9x9 with the disco ball located above the center of the floor (5,5).

Output
For each disco in the input, determine the minimum number of moves it takes to escape to the disco door (which is
always in the upper left corner, at row 1 column 1).

In the first example below, you can immediately move from the starting position to the door because the entire room
is blue. When you can escape, print a message, “I escaped from the disco #s in z turn(s) of the disco ball.” where z is
the smallest number of moves possible to get you from your starting position to the disco door and s is 1 for the first
disco, 2 for the second, etc. Since you can escape the disco in example 1 without the disco ball turning at all, z is 0.

In example 2, you are trapped because you must cross the green region to get to the exit, but you have no way to get
into or out of it. When it is not possible to reach the exit in any number of rotations of the disco ball, print the
message, “I'm the next ingredient in disco stew #s.” where s is as described above.

To solve example 3, you must understand how the disco ball rotates. For purposes of this problem, the disco ball
rotates clockwise in 90 degree increments. Here is how the dance floor would look for 0, 1, 2, and 3 rotations of the
disco ball:

BBBBBBBBB BBBBGBBBB BBBBBBBBB BBBBBBBBB
BGGGGGGGB BGGGGGGGB BGGGGGGGB BGGGYGGGB
BGBBBBBGB BGBRRRBGB BGBBBBBGB BGBRYRBGB
BGRRRRRGB BGBRRRBGB BGRRRRRGB BGBRYRBGB
GGRRRYYYB BGBRRRBGB BYYYRRRGG BGBRRRBGB
BGRRRRRGB BGBRYRBGB BGRRRRRGB BGBRRRBGB
BGBBBBBGB BGBRYRBGB BGBBBBBGB BGBRRRBGB
BGGGGGGGB BGGGYGGGB BGGGGGGGB BGGGGGGGB
BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBGBBBB

In the beginning, you're in the red region, but if you move to (6, 5) and wait for the next rotation, you're in the yellow
region and can move to (8,5) which after the next rotation puts you in the green region. You can then move to (5,9),
which after one final rotation will land you in the blue region where you can move directly to the exit. In total, you
made it with only three rotations of the disco ball. (Starting positions for each turn in this example are in bold.)

UIL State CS Hands-On Problem Set 2007 Page 6

Example Input File
3
9 9
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
BBBBBBBBB
5 5
BBBBBBBBB
BGGGGGGGB
BGBBBBBGB
BGRRRRRGB
BGRRRRRGB
BGRRRRRGB
BGBBBBBGB
BGGGGGGGB
BBBBBBBBB
5 5
BBBBBBBBB
BGGGGGGGB
BGBBBBBGB
BGRRRRRGB
GGRRRYYYB
BGRRRRRGB
BGBBBBBGB
BGGGGGGGB
BBBBBBBBB

Example Output To Screen
I escaped disco #1 in 0 turn(s) of the disco ball.
I'm the next ingredient in disco stew #2!
I escaped disco #3 in 3 turn(s) of the disco ball.

UIL State CS Hands-On Problem Set 2007 Page 7

6. Factor Faster
Program Name: factor.java Input File: factor.in

Write a program to factor integers or indicate they are prime.

Input
The first line of the input file will contain a single integer, n, indicating the number of integers to factor.
The next n lines will each contain a single positive integer less than 100000 (one hundred thousand).

Output
Factor each integer, m. If it is prime, output the message “m is prime”. Otherwise, output the prime factorization of
m with factors listed in descending order and with repeating factors noted using exponents. For example, the number
72 = 3 x 3 x 2 x 2 x 2 = 3^2 x 2^3 (see the third example).

Example Input File
3
13
99
72

Example Output To Screen
13 is prime
99 = 11 x 3^2
72 = 3^2 x 2^3

UIL State CS Hands-On Problem Set 2007 Page 8

7. Flower Power
Program Name: flower.java Input File: flower.in

When planning a garden, it's important to space plants far enough apart to keep their roots from interfering with one
another (as well as the above ground portions). Each type of plant has a typical radius for its root structure and
another typical radius for the above ground portion.

Write a program that, given a list of plants, their typical radii, and their positions in the garden, will determine
whether or not all of the plants have enough room to grow.

Input
The first line of the input file will contain a single integer, n, indicating the number of gardens requiring analysis.
For each garden, the first line will contain a single integer, m, indicating the number of plants in the garden. The
following m lines each represent one plant in the garden with four non-negative integers, a, b, x, y, where a is the
typical radius of the root system, b is the typical radius of the above ground portion, and the coordinates (x,y) denote
the plant's position in the garden.

Output
For each garden in the input, determine whether or not all plants have sufficient room to grow (both above and below
ground). If so, print, “yes”. Otherwise, print, “no”. After printing the verdict for each garden, output a string with
the total count of “yes” gardens but encrypt the string using the algorithm given in problem 4.

Note: In the example, the unencrypted version of the last line would be the number 1.

Example Input File
3
3
5 5 0 0
1 1 6 0
12 1 0 16
3
5 5 0 0
1 1 6 0
1 12 0 16
2
5 1 0 0
1 5 6 0

Example Output To Screen
no
no
yes
ce

UIL State CS Hands-On Problem Set 2007 Page 9

8. Mmmmmath
Program Name: math.java Input File: math.in

The mean, or average, of a set of integers is the sum of all the integers of the list divided by the number of integers in
the list. For example, the mean of the set {1,1,4,9,9} is (1+1+4+9+9)/5 = 4.8.

The median of a set of integers is the middle value in the set if it were sorted lowest to highest. If there are two
middle values (i.e., there are an even amount of integers in the set), then the median is the average of the two middle
values. For example, the median of the set {1,1,4,9,9} is 4 and the median of the set {1,1,1,4,9,9} is 2.5 (the average
of the two middle values, 1 and 4).

The mode of a set of integers is a set of the elements that occur most often, sorted in ascending order. For example,
the mode of the set {1,1,1,4,9,9} is {1} and the mode of the set {1,1,4,9,9} is {1,9}.

The meanode of a set of integers is the mean of its mode. For example, the meanode of the set {1,1,4,9,9} is 5, since
the mode of the set is {1,9} and the mean of that set is 5.

The mediode of a set of integers is the median of its mode. For example, the mediode of the set {1,1,4,4,9,9} is 4,
since the mode of the set is {1,4,9} and the median of that set is 4.

Note: The terms meanode and mediode are inventions of the authors for the purposes of this problem and are not
actual terms.

Input
The first line of the input file will contain a single integer, n, indicating the number of sets to analyze.
Each of the following n lines will consist of a comma-separated list of integers enclosed in curly braces, as shown in
the introduction. Each list will be sorted in ascending order.

Output
For each set of integers, print a single line of the mean, median, mode, meanode, and mediode values, each separated
by a single space. Print the mode values in set notation (comma-separated list of integers enclosed in curly braces).
Truncate any portions of values beyond two decimal values. (e.g., print 4.16 for a value of 4.16666666).

Example Input File
4
{1,1,4,9,9}
{1,1,1,4,9,9}
{1}
{9,9,9,9,9,9,9}

Example Output To Screen
4.8 4 {1,9} 5 5
4.16 2.5 {1} 1 1
1 1 {1} 1 1
9 9 {9} 9 9

UIL State CS Hands-On Problem Set 2007 Page 10

9. Chilly Rock
Program Name: rock.java Input File: rock.in

It may seem simple to create a yummy ice cream dessert, but you have to know the proper actions and perform them
in a valid sequence to get customers to pay.

Here is a list of possible actions that can be used when creating and selling a dessert:

Action Description
cone get a cone (holds up to 2 scoops)
waffle get a waffle cone (holds up to 4 scoops)
scup get a small cup (holds up to 2 scoops)
cup get a regular cup (holds up to 3 scoops
bcup get a big cup (holds up to 4 scoops)
dip dip a cone in liquid chocolate
scoop add a scoop of ice cream
sprinkles add sprinkles
wc add whipped cream
cherry add a cherry on top
cash get cash for your dessert creation

And here is a list of rules for how the actions must be performed:

The set of actions { cone, waffle, scup, cup, bcup } will be known collectively as starting actions.
The set of actions { sprinkles, wc, cherry } will be known collectively as topping actions.
The first action must be a starting action, and only the first action can be a starting action.
The dip action is only valid immediately following a waffle action or a cone action.
The scoop action must occur at least once.
The scoop action cannot occur more times than the capacity stated for the starting action.
All scoop actions must occur before any topping actions.
The wc action cannot occur more than once.
The cherry action can only occur immediately after a wc action.

. The last action must be a cash action, and only the last action can be a cash action.

Input
The first line of the input file will contain a single integer, n, indicating the number of desserts to evaluate. Each of
the following lines will contain a list of actions that may or may not be valid for creating and selling a dessert.

All actions in the input will come from the list given in the introduction.

Output
For each list of actions, determine whether or not they are valid for creating and selling a dessert. If they are valid,
print the message, “You created a dessert with x scoop(s)” where x is the total number of scoops in the dessert. If the
list of actions is not valid, print the message, “Your prospects for promotion are looking grim”.

Example Input File
3
cone dip scoop wc cherry sprinkles cash
bcup scoop scoop scoop scoop cash
cone dip scoop cherry cash

Example Output To Screen
You created a dessert with 1 scoop(s)
You created a dessert with 4 scoop(s)
Your prospects for promotion are looking grim

UIL State CS Hands-On Problem Set 2007 Page 11

10. Super Shipping
Program Name: shipping.java Input File: shipping.in

As the owner of a widget manufacturing company, you manufacture widgets, process orders, and make shipments.
Each day begins at 4:00 AM and ends at 8:00 PM (two shifts). Due to an overzealous janitorial staff, unfilled orders
and unshipped widgets from previous days are lost, but at the beginning of each new day a fresh set of orders arrive.

The widget assembly line produces widgets at a rate of one every five minutes, and widgets are shipped by the case
(9 widgets each). Partial cases cannot be shipped, so in the event that an order would result in an incomplete case,
the order is increased just enough to result in a full case. For example, if an order is made for 11 widgets, two full
cases of widgets must be shipped to complete it.

Write a program that calculates what time of day shipments are made to which customers. Process the orders in the
sequence that they are given (i.e., no order can be filled unless all orders before it are filled).

Input
The first line of the input file will contain a single integer, n, indicating the number of days of operations to calculate.
For each day, the first line of input will contain a single integer, m, indicating the number of orders for that day. The
following m lines will each contain an order consisting of the name of the ordering city (one word) followed by the
number of widgets they need.

Note, no city will have more than one order in any given day.

Output
For each day, first print a line, “Day #X” where X is 1 for the first day, 2 for the second, etc. Then, for each order in
the input, determine if it can be filled. If so, display the statement, “Ship Y cases to CITY at TIME.” where Y is the
minimum number of cases necessary to satisfy the order and TIME is the time of day the last case is ready to ship. If
the order cannot be filled, display the statement, “CITY does not get a shipment today.”

Example Input File
2
4
Houston 15
Dallas 20
Austin 30
Tulsa 185
2
Tulsa 185
Boston 1

Example Output To Screen
Day #1
Ship 2 cases to Houston at 5:30AM.
Ship 3 cases to Dallas at 7:45AM.
Ship 4 cases to Austin at 10:45AM.
Tulsa does not get a shipment today.
Day #2
Ship 21 cases to Tulsa at 7:45PM.
Boston does not get a shipment today.

UIL State CS Hands-On Problem Set 2007 Page 12

11. Global Warming
Program Name: warming.java Input File: warming.in

Recent reports on global warming are projecting a future rise in sea levels. Write a program that will take a
topological map and update it to show the effects of a particular sea level rise.

Input
The first line of the input file will contain a single integer, n, indicating the number of maps that need to be
processed. For each map, the input will contain:

1. A single line with integers r, c, and m, where r and c are the dimensions of the map and m is the amount of
rise in sea level to simulate.

2. A topological map with r rows and c columns. Each square unit of the map will be one of:
ocean – represented by a period ('.').
lake – represented by a lower case letter w.
land – represented by an integer in the range from 1 to 9 (inclusive) which indicates the height of the land
above sea level.

Output
For each map, reduce the elevation of all land areas by the sea level rise, replacing any land that would then be at sea
level (height 0) or below as an ocean or lake, as appropriate.

The difference between an ocean and a lake is that the lake does not touch the border of the map. Note that it is
possible that global warming will cause an ocean to connect to a lake or for a lake to touch the edge of the map. In
that case, the lake becomes part of the ocean and should then be represented appropriately (with a period). These
types of connections can only happen horizontally or vertically on the map (not diagonally).

Example Input File
2
5 5 1
.....
.999.
.919.
.999.
..1..
8 10 3
552111111.
6522www21.
65555w521.
6626ww521.
72w276521.
662666521.
555555521.
222222221.

Example Output To Screen
.....
.888.
.8w8.
.888.
.....
22........
32........
32222.2...
33w3..2...
4www432...
33w3332...
2222222...
..........

UIL State CS Hands-On Problem Set 2007 Page 13

12. What Did You Say?
Program Name: what.java Input File: what.in

Write a program that will read in a given piece of text from an input file and write that same text back to standard
output.

Input
The first line of the input file will contain a single integer, n, indicating the number of lines of text to read.

Output
Output each of the lines of text.

Example Input File
3
This is sample input.
It is also sample output.
Here is a random string: l;hasf098771234__!@#$^

Example Output To Screen
This is sample input.
It is also sample output.
Here is a random string: l;hasf098771234__!@#$^

UIL State CS Hands-On Problem Set 2007 Page 14

	Program Name: boring.java		Input File: <none>
	Input
	Output
	Example Output To Screen (first 10 lines only)

	Program Name: capital.java		Input File: capital.in
	Input
	Output
	Example Input File (first 3 lines only)
	Example Output To Screen (first 3 lines only)

	Program Name: chase.java		Input File: chase.in
	Input
	Output
	Example Input File
	Example Output To Screen

	Program Name: decrypt.java		Input File: decrypt.in
	Input
	Output
	Example Input File
	Example Output To Screen

	Program Name: disco.java		Input File: disco.in
	Input
	Output
	Example Input File
	Example Output To Screen

	Program Name: factor.java		Input File: factor.in
	Input
	Output
	Example Input File
	Example Output To Screen

	Program Name: flower.java		Input File: flower.in
	Input
	Output
	Example Input File
	Example Output To Screen

	Program Name: math.java		Input File: math.in
	Input
	Output
	Example Input File
	Example Output To Screen

	Program Name: rock.java		Input File: rock.in
	Output
	Example Input File
	Example Output To Screen

	Program Name: shipping.java		Input File: shipping.in
	Input
	Output
	Example Input File
	Example Output To Screen

	Program Name: warming.java		Input File: warming.in
	Input
	Output
	Example Input File
	Example Output To Screen

	Program Name: what.java		Input File: what.in
	Input
	Output
	Example Input File
	Example Output To Screen

