
slide 1

Vitaly Shmatikov

CS 345

Types and
Parametric Polymorphism

slide 2

Reading Assignment

Mitchell, Chapter 6
C Reference Manual, Chapters 5 and 6

slide 3

Type

A type is a collection of computable values that
share some structural property

Examples
• Integers
• Strings
• int → bool
• (int → int) →bool

“Non-examples”
• {3, true, λx.x}
• Even integers
• {f:int → int | if x>3

then f(x) > x*(x+1)}

Distinction between sets that are types and sets that are
not types is language-dependent

slide 4

Uses for Types

Program organization and documentation
• Separate types for separate concepts

– Represent concepts from problem domain

• Indicate intended use of declared identifiers
– Types can be checked, unlike program comments

Identify and prevent errors
• Compile-time or run-time checking can prevent

meaningless computations such as 3 + true - “Bill”

Support optimization
• Example: short integers require fewer bits
• Access record component by known offset

slide 5

Operations on Typed Values

Often a type has operations defined on values of
this type
• Integers: + - / * < > … Booleans: ∧ ∨ ¬ …

Set of values is usually finite due to internal
binary representation inside computer
• 32-bit integers in C: –2147483648 to 2147483647
• Addition and subtraction may overflow the finite range,

so sometimes a + (b + c) ≠ (a + b) + c

• Exceptions: unbounded fractions in Smalltalk,
unbounded Integer type in Haskell

• Floating point problems

slide 6

Type Errors

Machine data carries no type information
• 01000000010110000000000000000000 means…
• Floating point value 3.375? 32-bit integer

1,079,508,992? Two 16-bit integers 16472 and 0?
Four ASCII characters @ X NUL NUL?

A type error is any error that arises because an
operation is attempted on a value of a data type
for which this operation is undefined
• Historical note: in Fortran and Algol, all of the types

were built in. If needed a type “color,” could use
integers, but what does it mean to multiply two colors?

slide 7

Static vs. Dynamic Typing

Type system imposes constraints on use of values
• Example: only numeric values can be used in addition
• Cannot be expressed syntactically in EBNF

Language can use static typing
• Types of all variables are fixed at compile time
• Example?

… or dynamic typing
• Type of variable can vary at run time depending on

value assigned to this variable
• Example?

slide 8

Strong vs. Weak Typing

A language is strongly typed if its type system
allows all type errors in a program to be detected
either at compile time or at run time
• A strongly typed language can be either statically or

dynamically typed!

Union types are a hole in the type system of
many languages (why?)
Most dynamically typed languages associate a
type with each value

slide 9

Compile- vs. Run-Time Checking

Type-checking can be done at compile time
• Examples: C, ML f(x) must have f : A → B and x : A

… or run time
• Examples: Perl, JavaScript

Java does both
Basic tradeoffs
• Both prevent type errors
• Run-time checking slows down execution
• Compile-time checking restricts program flexibility

– JavaScript array: elements can have different types
– ML list: all elements must have same type

Which gives better
programmer diagnostics?

slide 10

Expressiveness vs. Safety

In JavaScript, we can write function like
function f(x) { return x < 10 ? x : x(); }

Some uses will produce type error, some will not

Static typing always conservative
if (big-hairy-boolean-expression)

then f(5);
else f(10);

Cannot decide at compile time if run-time error will
occur, so can’t define the above function

slide 11

Relative Type Safety of Languages

Not safe: BCPL family, including C and C++
• Casts, pointer arithmetic

Almost safe: Algol family, Pascal, Ada
• Dangling pointers.

– Allocate a pointer p to an integer, deallocate the memory
referenced by p, then later use the value pointed to by p

– No language with explicit deallocation of memory is fully
type-safe

Safe: Lisp, ML, Smalltalk, JavaScript, and Java
• Lisp, Smalltalk, JavaScript: dynamically typed
• ML, Java: statically typed

slide 12

Enumeration Types

User-defined set of values
• enum day {Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday};
enum day myDay = Wednesday;

• In C/C++, values of enumeration types are
represented as integers: 0, ..., 6

More powerful in Java:
• for (day d : day.values())

System.out.println(d);

slide 13

Pointers

C, C++, Ada, Pascal
Value is a memory address
• Remember r-values and l-values?

Allows indirect referencing
Pointers in C/C++
• If T is a type and ref T is a pointer:

& : T → ref T * : ref T → T *(&x) = x

Explicit access to memory via pointers can result
in erroneous code and security vulnerabilities

slide 14

Arrays

Example: float x[3][5];
Indexing []
• Type signature: T[] x int → T
• In the above example, type of x: float[][],

type of x[1]: float[], type of x[1][2]: float
Equivalence between arrays and pointers
• a = &a[0]
• If either e1 or e2 is type: ref T,

then e1[e2] = *((e1) + (e2))
• Example: a is float[] and i int, so a[i] = *(a + i)

slide 15

Strings

Now so fundamental, directly supported by
languages
C: a string is a one-dimensional character array
terminated by a NULL character (value = 0)
Java, Perl, Python: a string variable can hold an
unbounded number of characters
Libraries of string operations and functions
• Standard C string libraries are unsafe!

slide 16

Structures

Collection of elements of different types
• Not in Fortran, Algol 60, used first in Cobol, PL/I
• Common to Pascal-like, C-like languages
• Omitted from Java as redundant

struct employeeType {
char name[25];
int age;
float salary;

};
struct employeeType employee;
...
employee.age = 45;

slide 17

Unions

union in C, case-variant record in Pascal
Idea: multiple views of same storage

type union =
record

case b : boolean of
true : (i : integer);
false : (r : real);

end;
var tagged : union;
begin tagged := (b => false, r => 3.375);

put(tagged.i); -- error

slide 18

Recursive Datatypes

data Value = IntValue Integer | FloatValue Float |
BoolValue Bool | CharValue Char
deriving (Eq, Ord, Show)

data Expression = Var Variable | Lit Value |
Binary Op Expression Expression |
Unary Op Expression
deriving (Eq, Ord, Show)

type Variable = String
type Op = String
type State = [(Variable, Value)]

slide 19

Functions as Types

Pascal example:
function newton(a, b: real; function f: real): real;
• Declares that f returns a real value, but the arguments

to f are unspecified

Java example:
public interface RootSolvable {double valueAt(double x);}
public double Newton(double a, double b, RootSolvable f);

slide 20

Type Equivalence

Pascal Report:
“The assignment statement serves to replace the

current value of a variable with a new value specified
as an expression ... The variable (or the function)
and the expression must be of identical type”

Nowhere does it define identical type
• Which of the following types are equivalent?

struct complex { float re, im; };

struct polar { float x, y; };

struct { float re, im; } a, b;

struct complex c,d; struct polar e; int f[5], g[10];

slide 21

Subtypes

A subtype is a type that has certain constraints
placed on its values or operations
Can be directly specified in some languages (Ada)
subtype one_to_ten is Integer range 1 .. 10;

Will talk more about subtyping when talking about
object-oriented programming

slide 22

Overloading

An operator or function is overloaded when its
meaning varies depending on the types of its
operands or arguments or result
Examples:
• Addition: integers and floating-point values

– Can be mixed: one operand an int, the other floating point
– Also string concatenation in Java

• Class PrintStream in Java:
print, println defined for boolean, char, int, long,
float, double, char[], String, Object

slide 23

Function Overloading in C++

Functions that have the same name but can
take arguments of different types

Tells compiler (not preprocessor) to substitute the code of
the function at the point of invocation
• Saves the overhead of a procedure call
• Preserves scope and type rules as if a function call was made

slide 24

Overloading Infix Operators in C++

Cannot change position, associativity or precedence

slide 25

Operator Overloading in ML

ML infers which function to use from the type
of the operands

slide 26

User-Defined Infix Operators in ML

• Precedence is specified by integer values 0-9
– 0 = lowest precedence; left associativity (or else use infixr)
– nonfix turns infix function into a binary prefix function

slide 27

Polymorphism and Generics

An operator or function is polymorphic if it can
be applied to any one of several related types
• Enables code re-use!

Example: generic functions in C++
• Function operates in exactly the same way regardless

of the type of its arguments

• For each use, compiler substitutes the actual type of
the arguments for the ‘type’ template parameters

• This is an example of parametric polymorphism

slide 28

Polymorphism vs. Overloading

Parametric polymorphism
• Single algorithm may be given many types
• Type variable may be replaced by any type
• f : t→t ⇒ f : int→int, f : bool→bool, ...

Overloading
• A single symbol may refer to more than one algorithm
• Each algorithm may have different type
• Choice of algorithm determined by type context
• Types of symbol may be arbitrarily different
• + has types int*int→int, real*real→real

Do you see the
difference?

slide 29

Type Checking vs. Type Inference

Standard type checking
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };

• Look at the body of each function and use declared
types of identifiers to check agreement

Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2; };

• Look at the code without type information and figure
out what types could have been declared

ML is designed to make type inference tractable

slide 30

Motivation

Types and type checking
• Type systems have improved steadily since Algol 60
• Important for modularity, compilation, reliability

Type inference
• Widely regarded as important language innovation
• ML type inference is an illustrative example of a

flow-insensitive static analysis algorithm
– What does this mean?

slide 31

ML Type Inference

Example
- fun f(x) = 2+x;
> val it = fn : int → int

How does this work?
• + has two types: int*int → int, real*real→real
• 2 : int has only one type
• This implies + : int*int → int
• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type.
In many cases, unique type may be polymorphic.

slide 32

How Does This Work?

Example
- fun f(x) = 2+x;
> val it = fn : int → int

How does this work?

x

fun

@

@

+ 2

Assign types to leaves

: t

int → int → int
real → real→real

: int
Propagate to internal
nodes and generate
constraints

int (t = int)

int→int

t→int

Solve by substitution

= int→int

Graph for f(x) = 2+x

slide 33

Application and Abstraction

Application
• f must have function type

domain→range
• Domain of f must be type

of argument x
• Result type is range of f

Function expression
• Type is function type

domain→range

• Domain is type of variable x
• Range is the type of

function body e

x

@

f x

fun

e: t: s : s : t

: r (s = t→ r) : s → t

slide 34

Types with Type Variables

Example
- fun f(g) = g(2);
> val it = fn : (int → t) → t

How does this work?

2

fun

@

g

Assign types to leaves

: int: sPropagate to internal
nodes and generate
constraints

t (s = int→t)

s→t

Solve by substitution

= (int→t)→t

Graph for f(g) = g(2)

slide 35

Using a Polymorphic Function

Function
- fun f(g) = g(2);
> val it = fn : (int → t) → t

Possible applications
- fun add(x) = 2+x;
> val it = fn : int → int
- f(add);
> val it = 4 : int

- fun isEven(x) = ...;
> val it = fn : int → bool
- f(isEven);
> val it = true : bool

slide 36

Recognizing Type Errors

Function
- fun f(g) = g(2);
> val it = fn : (int → t) → t

Incorrect use
- fun not(x) = if x then false else true;
> val it = fn : bool → bool
- f(not);

Type error: cannot make bool → bool = int → t

slide 37

Another Type Inference Example

Function definition
- fun f(g,x) = g(g(x));
> val it = fn : (t → t)*t → t

Type inference

Solve by substitution

= (v→v)*v→v
fun

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal
nodes and generate
constraints

v (s = u→v)

s*t→v

u (s = t→u)

Graph for f(g,x) = g(g(x))

slide 38

Polymorphic Datatypes

Datatype with type variable ’a is syntax for “type variable a”

- datatype ‘a list = nil | cons of ‘a*(‘a list)
> nil : ‘a list
> cons : ‘a*(‘a list) → ‘a list

Polymorphic function
- fun length nil = 0

| length (cons(x,rest)) = 1 + length(rest)
> length : ‘a list → int

Type inference
• Infer separate type for each clause
• Combine by making two types equal (if necessary)

slide 39

Type Inference with Recursion

Second clause
length(cons(x,rest)) =

1 + length(rest)

Type inference
• Assign types to

leaves, including
function name

• Proceed as usual
• Add constraint that

type of function body
is equal to the type of
function name

rest

x

@

length

@

cons

+ 1

@

@

: t

fun
‘a list→int = t

: ‘a*‘a list→‘a list

Tricky, isn’t it?

slide 40

Type Inference Summary

Type of expression computed, not declared
• Does not require type declarations for variables
• Find most general type by solving constraints
• Leads to polymorphism

Static type checking without type specifications
• Idea can be applied to other program properties

Sometimes provides better error detection than
type checking
• Type may indicate a programming error even if there

is no type error (how?)

slide 41

Costs of Type Inference

More difficult to identify program line that
causes error
ML requires different syntax for values of
different types
• integer: 3, real: 3.0

Complications with assignment took years to
work out

slide 42

Information From Type Inference

An interesting function on lists
fun reverse (nil) = nil
| reverse (x::lst) = reverse(lst);

Most general type
reverse : ‘a list → ‘b list

What does this mean?
• Since reversing a list does not change its type, there

must be an error in the definition of “reverse”

See Koenig paper on course website

slide 43

Param. Polymorphism: ML vs. C++

ML polymorphic function
• Declaration has no type information
• Type inference: type expression with variables, then

substitute for variables as needed

C++ function template
• Declaration gives type of function argument, result
• Place inside template to define type variables
• Function application: type checker does instantiation

ML also has module system with explicit type parameters

slide 44

Example: Swap Two Values

ML
- fun swap(x,y) =

let val z = !x in x := !y; y := z end;
val swap = fn : 'a ref * 'a ref -> unit

C++
template <typename T>
void swap(T& x, T& y){

T tmp = x; x=y; y=tmp;
}

Declarations look similar, but compiled very differently

slide 45

Implementation

ML
• Swap is compiled into one function
• Typechecker determines how function can be used

C++
• Swap is compiled into linkable format
• Linker duplicates code for each type of use

Why the difference?
• ML reference cell is passed by pointer, local x is a

pointer to value on heap
• C++ arguments passed by reference (pointer), but

local x is on stack, size depends on type

slide 46

Another Example

C++ polymorphic sort function
template <typename T>
void sort(int count, T * A[count]) {

for (int i=0; i<count-1; i++)
for (int j=i+1; j<count-1; j++)

if (A[j] < A[i]) swap(A[i],A[j]);
}

What parts of implementation depend on type?
• Indexing into array
• Meaning and implementation of <

slide 47

ML Overloading and Type Inference

Some predefined operators are overloaded
User-defined functions must have unique type
- fun plus(x,y) = x+y;
This is compiled to int or real function, not both

Why is a unique type needed?
• Need to compile code ⇒ need to know which +
• Efficiency of type inference
• Aside: general overloading is NP-complete

slide 48

Summary

Types are important in modern languages
• Organize and document the program, prevent errors,

provide important information to compiler

Type inference
• Determine best type for an expression, based on

known information about symbols in the expression

Polymorphism
• Single algorithm (function) can have many types

Overloading
• Symbol with multiple meanings, resolved when

program is compiled

	Types and�Parametric Polymorphism
	Reading Assignment
	Type
	Uses for Types
	Operations on Typed Values
	Type Errors
	Static vs. Dynamic Typing
	Strong vs. Weak Typing
	Compile- vs. Run-Time Checking
	Expressiveness vs. Safety
	Relative Type Safety of Languages
	Enumeration Types
	Pointers
	Arrays
	Strings
	Structures
	Unions
	Recursive Datatypes
	Functions as Types
	Type Equivalence
	Subtypes
	Overloading
	Function Overloading in C++
	Overloading Infix Operators in C++
	Operator Overloading in ML
	User-Defined Infix Operators in ML
	Polymorphism and Generics
	Polymorphism vs. Overloading
	Type Checking vs. Type Inference
	Motivation
	ML Type Inference
	How Does This Work?
	Application and Abstraction
	Types with Type Variables
	Using a Polymorphic Function
	Recognizing Type Errors
	Another Type Inference Example
	Polymorphic Datatypes
	Type Inference with Recursion
	Type Inference Summary
	Costs of Type Inference
	Information From Type Inference
	Param. Polymorphism: ML vs. C++
	Example: Swap Two Values
	Implementation
	Another Example
	ML Overloading and Type Inference
	Summary

