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1 Introduction

Parkinson’s disease (PD) is a chronic neurodegen-
erative disorder that is estimated to affect 1.2 mil-
lion Americans by 2030. Patients with Parkinson’s
(PWP) face mobility challenges and speech and
writing difficulties which lead to a negative im-
pact on health-related quality of life and restricted
independence. Research has shown that early de-
tection of PD may help in slowing disease progres-
sion by preserving the functioning of the neurons,
reducing symptoms such as difficulty in perform-
ing voluntary movements, and improved quality-
of-life, and decreasing costs associated with PD
(Murman, 2012). While there is no current cure
for PD, treatments such as levodopa/carbidopa are
more effective when administered early on in the
disease (Zhu et al., 2017; noa). The pathology
of PD is characterized by the aggregation of α-
synuclein and an excessive loss of dopaminergic
neurons (Tysnes and Storstein, 2017). Studies have
shown proteins found in the cerebrospinal fluid can
have different shapes in PWP and healthy individ-
uals and could hence be potential biomarkers of
PD (Karayel et al., 2022; Winchester et al., 2022;
Goldman et al., 2018). The complete set of pro-
teins involved in PD remains an open research ques-
tion and any proteins that have predictive value are
likely worth investigating further (Cova and Pri-
ori, 2018; Lotankar et al., 2017). In this study, we
attempt to predict the progression of Parkinson’s
disease using protein/peptide abundance data.

The severity of PD is measured by the Unified
Parkinson’s Disease Rating Scale (UPDRS), which
evaluates various aspects of Parkinson’s disease in-
cluding non-motor and motor experiences of daily
living and motor complications and can be used in
a clinical setting as well as in research. Our primary
research question is to characterize the change in
UPDRS over time by studying the shape of the tra-
jectory of UPDRS over time (time effect). Then,

we investigate whether the initial concentration of
a protein/peptide influences the UPDRS trajectory
(group effect). Finally, we model the time-varying
relationship between UPDRS and initial protein
concentration. We perform the above analyses both
qualitatively and quantitatively.

Observing the evolution of UPDRS over time
could help in determining whether there is an ob-
servable variation between PWP and healthy con-
trols, which in turn would indicate whether UPDRS
is an effective metric in distinguishing between
the two groups. Testing for group effect enables
us to evaluate the potential predictive value of a
given protein/peptide as a biomarker for the early
detection of PD. We could possibly identify and
rank a comprehensive subset of proteins/peptides
as established biomarkers for PD. Lastly, the time-
varying relationship between UPDRS and initial
protein/peptide concentration allows us to predict
future UPDRS for new PWP and hence enables us
to predict the progression of PD for new PWP.

In this study, we focus on the relationship be-
tween UPDRS_1 and the Neural cell adhesion
molecule L1-like protein, hereafter represented by
the code O00533. Neural cell adhesion molecules
of the immunoglobulin superfamily are important
components of the network of guidance cues and
receptors that govern axon growth and guidance
during development (Kenwrick and Doherty, 1998).
An analysis of the functional capabilities of differ-
ent mutated human L1-like proteins finds that it
could potentially cause symptoms such as mental
retardation, hydrocephalus, macrocephaly, the age-
nesis of the corpus callosum, spastic paraparesis,
aphasia, and adducted thumbs (Hortsch, 1996). Re-
cent research has indicated the potential role of a
neural cell adhesion molecule L1-like protein as a
diagnostic and prognostic marker in gastrointesti-
nal stroma tumors (Karstens et al., 2020). This
motivates us to inspect this specific molecule for
potential prognostic value for PD.



2 Methods

The dataset used in this study is from the AMP®-
Parkinson’s Disease Progression Prediction contest
on Kaggle. The dataset consists of protein abun-
dance values derived from mass spectrometry read-
ings of cerebrospinal fluid (CSF) samples gathered
from patients over the course of multiple years
while they also took assessments of PD severity.
The dataset consists of three tables which are as
follows:

• train_peptides.csv Mass spectrometry data at
the peptide level. Peptides are the component
subunits of proteins.

– visit_id - ID code for the visit.
– visit_month - The month of the visit, rel-

ative to the first visit by the patient.
– patient_id - An ID code for the patient.
– UniProt - The UniProt ID code for the as-

sociated protein. There are often several
peptides per protein.

– Peptide - The sequence of amino acids
included in the peptide.

– PeptideAbundance - The frequency of
the amino acid in the sample.

• train_proteins.csv Protein expression frequen-
cies aggregated from the peptide level data.

– visit_id - ID code for the visit.
– visit_month - The month of the visit, rel-

ative to the first visit by the patient.
– patient_id - An ID code for the patient.
– UniProt - The UniProt ID code for the as-

sociated protein. There are often several
peptides per protein. The test set may
include proteins not found in the train
set.

– NPX - Normalized protein expression.
The frequency of the protein’s occur-
rence in the sample. May not have a
1:1 relationship with the component pep-
tides as some proteins contain repeated
copies of a given peptide.

• train_clinical_data.csv

– visit_id - ID code for the visit.
– visit_month - The month of the visit, rel-

ative to the first visit by the patient.
– patient_id - An ID code for the patient.

– updrs_[1-4] - The patient’s score for part
N of the Unified Parkinson’s Disease Rat-
ing Scale. Higher numbers indicate more
severe symptoms. Each sub-section cov-
ers a distinct category of symptoms, such
as mood and behavior for Part 1 and mo-
tor functions for Part 3.

– upd23b_clinical_state_on_medication -
Whether or not the patient was taking
medication such as Levodopa during the
UPDRS assessment. Expected to mainly
affect the scores for Part 3 (motor func-
tion). These medications wear off fairly
quickly (on the order of one day) so it’s
common for patients to take the motor
function exam twice in a single month,
both with and without medication.

Throughout this study, we consider our data to
be longitudinal in nature. We investigate UPDRS1
for time, group, and time-group effects with respect
to O00533.
Yij is the response variable for the ith individual

(i = 1, ..., N) measured at time tj , (j = 1, ..., n).
We first analyze the time effect, group effect,

and interaction between time and group qualita-
tively by using visualization techniques suitable
for longitudinal data. In order to induce groups on
the different subjects, we calculate the arithmetic
mean of protein concentrations at time 0 and as-
sign 0(1) if the subject’s protein concentration is
greater(lesser) than the mean. Our variables for
this analysis are:

• patient_id - unique id

• class_protein - a factor with categories ’0’ and
’1’

• updrs1_t0 - UPDRS1 at 0 months

• updrs1_t12 - UPDRS1 at 12 months

• updrs1_t24 - UPDRS1 at 24 months

• updrs1_t36 - UPDRS1 at 36 months

• updrs1_t48 - UPDRS1 at 48 months

We first summarize the measures at each visit,
then we visualize these summaries by the group.
Next, we visualize the correlations between time
points first overall and then by group.

In the second part of this study, we quantitatively
analyze the time-dependent relationship between

https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction/data
https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction/data


UPDRS and initial protein concentration using Lin-
ear Mixed Models.

To use our model for inference, we make the
following three general assumptions about our data:

• Assume the model: E(Yi) = Xiβ where Xi

is a vector of (time-independent) covariates

• Assume Yi arises from a multivariate normal
distribution with Cov(Yi) = Σi = Σi(θ)
where θ is a vector of covariance parameters

β is estimated using Restricted Maximum Likeli-
hood Estimation (REML) since there are not a large
number of observations per person. (The t-tests use
Satterthwaite’s method.) We use a Linear Mixed
Model that models the covariance using a random
effects covariance structure.

First, we use a random intercepts model to study
the time effect as follows:

Yij = β0+β1Xij1+β2Xij2+β3Xij3+β4Xij4+bi+ϵij
(1)

where Xijk denotes measurement at month k
(month 0 is used as a reference), and bi is the
random subject effect, and ϵij is the residual er-
ror where we assume that b ∼ N(0, σ2

b ), and
ϵij ∼ N(0, σ2), and bi ⊥ ϵij .

To model the group effect, we add a term that
denotes group to the above equation:

Yij = β0 + β1Xij1+β2Xij2 + β3Xij3+

β4Xij4 + β5Xij5+bi + ϵij
(2)

where Xij5 is 1 if the subject belongs to group1
(the group with O00533 level below the mean is
used as a reference).

To investigate the interaction between time and
group, we add interaction terms to the above model:

Yij = β0 + β1Xij1 + β2Xij2 + β3

Xij3 + β4Xij4+β5Xij5 + β6Xij1Xij5+

β6Xij2Xij5 + β7Xij3Xij5+β8Xij4Xij5 + bi + ϵij
(3)

We now build a linear time model by assuming
a linear relationship between the time variable and
the mean response allowing the linear trend varies
by group:

Yij = β0+β1Xij1+β2Xij2+β3Xij1Xij2+bi+ϵij
(4)

where Xij1 indicates time and Xij2 indicates group
and Xij1Xij2 is an interaction term.

Then, we visualize the subject-specific trajecto-
ries for 10 randomly chosen patients.

Finally, we attempt to fit a random intercepts
and slopes model to the given data where the fixed
intercept is explicit:

Yij = β0 +Xijβ + bi + αiXij + ϵij (5)

where bi is the random intercept, αi is the ran-
dom slope, ϵij is the residual error and it is as-
sumed that ϵij ∼ N(0, σ2), αi, βi ⊥ ϵij , and
(bi, αi) ∼ N((0, 0), ((σ2

b , σab), (σab, σ
2
α)). This

model assumes that individuals vary not only in
their baseline level of response (intercept) but also
in terms of their changes (slope) in the mean re-
sponse over time.

3 Results

From 1, we can observe that UPDRS_1 increases
with month which shows that it does have a time ef-
fect. Summarizing UPDRS_1 by group (2), we find
that the group with O00533 level below the mean
tends to have higher UPDRS scores with the pas-
sage of time as compared to those the group with
O00533 level above the mean. The positive correla-
tion values(∼ 0.7) of consecutive UPDRS measure-
ments(4) motivate us to use linear mixed models to
quantitatively measure the time effect. Visualizing
consecutive UPDRS measurements by group(??)
indicates a minimal group effect, which again is
further explored quantitatively. The subject-wise
trajectories (5) corroborate the findings from 2 that
the increase in UPDRS_1 with time is greater in
the group with O00533 level below the mean than
in the group with O00533 level above the mean.

The ANOVA test has a value of 2.2e-16 and
hence there is significant evidence that a random
intercepts model is required. The results of the ran-
dom effects model 1 shows that there is time effect:
the mean UPDRS_1 at month 0 years (baseline) is
5.3521, the difference between the mean responses
at 12 and 0 months is 0.4437, that between the
mean responses at 24 and 0 months is 1.2887, that
between the mean responses at 36 and 0 months is
1.9859, and that between the mean responses at 48
and 0 months is 2.3592. All, except the difference
between 12 and 0 months, are significant. There is
a significant group effect and the mean UPDRS_1
of the group with O00533 level below the mean
is higher than that of the group with O00533 level
above the mean by 1.5590 (table 2). The interac-
tion of time and group is NOT significant (0.9321)



Figure 1: UPDRS_1: Summaries by Visit Month

Figure 2: UPDRS_1: Summaries by Visit Month, by Group



Figure 3: UPDRS_1: Visualizing Correlations over Time

Figure 4: UPDRS_1: Visualizing Correlations over Time by Group



Figure 5: UPDRS_1: Subject-wise Trajectories by Group

Fixed Effects Estimate Std. Error df t value Pr(>|t|) Significant
Intercept 5.3521 0.4341 243.2922 12.329 <2e-16 Yes

UPDRS_1 at month 12 0.4437 0.3425 564.0000 1.295 0.195717 No
UPDRS_1 at month 24 1.2887 0.3425 564.0000 3.763 0.000186 Yes
UPDRS_1 at month 36 1.9859 0.3425 564.0000 5.798 1.12e-08 Yes
UPDRS_1 at month 48 2.3592 0.3425 564.0000 6.888 1.51e-11 Yes

Table 1: UPDRS_1: Linear Mixed Model - Time Effect



(Table 3).
The linear model 4 corroborates the findings

from the linear mixed model and the initial visual-
izations that the group with O00533 level below the
mean has higher UPDRS_1 scores than the group
with O00533 level above the mean. The mean UP-
DRS_1 at time zero among the group with O00533
level below the mean is β0 = 6.128e + 00 while
for the group with O00533 level above the mean
it is β1 = −1.539e+ 00 (the inference is that it is
higher for the group with O00533 level below the
mean than for the group with O00533 level above
the mean). It shows that the time effect is signif-
icant (2.31e-08), whereas the group effect is not
(0.9480). The subject-specific trajectories of 10
random subjects predicted by the linear time model
are visualized in Figure 6.

The random slopes and intercepts failed to fit to
converge to the data, perhaps because there was
insufficient data to estimate both the intercepts and
the parameters. Consequently, we were unable to
perform any further analysis.

4 Discussion

In this study, we used visualization techniques, lin-
ear mixed models, and linear time models to in-
vestigate the time evolution of UPDRS_1 and its
relationship with the concentration of the Neural
cell adhesion molecule L1-like protein (coded as
O00533). There was found to be a time effect
and a group effect but no significant interaction
between time and group. The UPDRS scores were,
in general, found to increase with time, indicat-
ing an increase in the severity of PD. According
to our model for group effects, the increase in
UPDRS over time was higher in the group with
O00533 level below the mean than in the group
with O00533 level above the mean. This could
possibly mean a lower concentration of the Neural
cell adhesion molecule L1-like protein may indi-
cate an increased risk for PD and that the protein
is a potential biomarker for PD. Since our model
uses protein concentration at time zero, it could
potentially be applied for the early detection of PD.

In this study, we have analyzed the time effect,
group effect, and interaction between time and
group of UPDRS_1 with respect to the Neural cell
adhesion molecule L1-like protein alone. This ap-
proach could easily be extended to studying all
such proteins for the other three UPDRS as well.
Our models incorporate protein abundance data at

time zero alone, whereas there is data available for
all times which would be better utilized by models
that use time-varying to model time/group effects.
Our random slopes and intercepts model failed to
converge mostly likely due to the paucity of data.
Future studies with access to more data points may
be able to successfully explore such models.



Fixed Effects Estimate Std. Error df t value Pr(>|t|) Significant
Intercept 6.1756 0.5830 187.2441 10.593 <2e-16 Yes

UPDRS_1 at month 12 0.4437 0.3425 564.0000 1.295 0.195717 No
UPDRS_1 at month 24 1.2887 0.3425 564.0000 3.763 0.000186 Yes
UPDRS_1 at month 36 1.9859 0.3425 564.0000 5.798 1.12e-08 Yes
UPDRS_1 at month 48 2.3592 0.3425 564.0000 6.888 1.51e-11 Yes

Group1 -1.5590 0.7448 140.0000 -2.093 0.038122 Yes

Table 2: UPDRS_1: Linear Mixed Model - Group Effect

Fixed Effects Estimate Std. Error df t value Pr(>|t|) Significant
Intercept 6.04478 0.62687 244.76251 9.643 <2e-16 Yes

UPDRS_1 at month 12 0.67164 0.50001 560.00000 1.343 0.17973 No
UPDRS_1 at month 24 1.44776 0.50001 560.00000 2.895 0.00393 Yes
UPDRS_1 at month 36 2.23881 0.50001 560.00000 4.478 9.15e-06 Yes
UPDRS_1 at month 48 2.37313 0.50001 560.00000 4.746 2.64e-06 Yes

Group1 -1.31144 0.86256 244.76251 -1.520 0.12970 No
UPDRS_1 at month 12: Group1 -0.43164 0.68800 560.00000 -0.627 0.53066 No
UPDRS_1 at month 24: Group1 -0.30109 0.68800 560.00000 -0.438 0.66182 No
UPDRS_1 at month 36: Group1 -0.47881 0.68800 560.00000 -0.696 0.48676 No
UPDRS_1 at month 48: Group1 -0.02647 0.68800 560.00000 -0.038 0.96933 No

Table 3: UPDRS_1: Linear Mixed Model - Interaction between Time and Group

Fixed Effects Estimate Std. Error df t value Pr(>|t|) Significant
Intercept 6.128e+00 5.853e-01 1.901e+02 10.470 <2e-16 Yes
Group0 -1.539e+00 8.054e-01 1.901e+02 -1.911 0.0575 No

Visit Month 5.261e-02 9.283e-03 5.660e+02 5.668 2.31e-08 Yes
Group1 -8.342e-04 1.277e-02 5.660e+02 -0.065 0.9480 No

Table 4: UPDRS_1: Linear Model - Time Effect



Figure 6: UPDRS_1: Subject-wise Trajectories predicted by Linear Time model



References
Levodopa and the Progression of Parkinson’s Disease |

NEJM.

Ilaria Cova and Alberto Priori. 2018. Diagnostic
biomarkers for Parkinson’s disease at a glance:
where are we? Journal of Neural Transmission,
125(10):1417–1432.

Jennifer G. Goldman, Howard Andrews, Amy
Amara, Anna Naito, Roy N. Alcalay, Leslie M.
Shaw, Peggy Taylor, Tao Xie, Paul Tuite, Claire
Henchcliffe, Penelope Hogarth, Samuel Frank,
Marie-Helene Saint-Hilaire, Mark Frasier, Vanessa
Arnedo, Alyssa N. Reimer, Margaret Sutherland,
Christine Swanson-Fischer, Katrina Gwinn, The
Fox Investigation of New Biomarker Discovery, and
Un Jung Kang. 2018. Cerebrospinal fluid, plasma,
and saliva in the BioFIND study: Relationships
among biomarkers and Parkinson’s disease Fea-
tures. Movement Disorders, 33(2):282–288. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/mds.27232.

Michael Hortsch. 1996. The L1 Family of Neural Cell
Adhesion Molecules: Old Proteins Performing New
Tricks. Neuron, 17(4):587–593. Publisher: Elsevier.

Ozge Karayel, Sebastian Virreira Winter, Shalini Pad-
manabhan, Yuliya I. Kuras, Duc Tung Vu, Idil
Tuncali, Kalpana Merchant, Anne-Marie Wills,
Clemens R. Scherzer, and Matthias Mann. 2022.
Proteome profiling of cerebrospinal fluid reveals
biomarker candidates for Parkinson’s disease. Cell
Reports Medicine, 3(6):100661.

Karl-Frederick Karstens, Eugen Bellon, Adam Polonski,
Gerrit Wolters-Eisfeld, Nathaniel Melling, Matthias
Reeh, Jakob R. Izbicki, and Michael Tachezy. 2020.
Expression and serum levels of the neural cell adhe-
sion molecule L1-like protein (CHL1) in gastroin-
testinal stroma tumors (GIST) and its prognostic
power. Oncotarget, 11(13):1131–1140. Publisher:
Impact Journals.

Sue Kenwrick and Patrick Doherty. 1998. Neu-
ral cell adhesion molecule L1: relating disease
to function. BioEssays, 20(8):668–675. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291521-
1878%28199808%2920%3A8%3C668%3A%3AAID-
BIES10%3E3.0.CO%3B2-X.

Sharvari Lotankar, Kedar S Prabhavalkar, and Lokesh K
Bhatt. 2017. Biomarkers for Parkinson’s Dis-
ease: Recent Advancement. Neuroscience Bulletin,
33(5):585–597.

Daniel L. Murman. 2012. Early treatment of Parkin-
son’s disease: opportunities for managed care.
The American Journal of Managed Care, 18(7
Suppl):S183–188.

Ole-Bjørn Tysnes and Anette Storstein. 2017. Epidemi-
ology of Parkinson’s disease. Journal of Neural
Transmission (Vienna, Austria: 1996), 124(8):901–
905.

Laura Winchester, Imelda Barber, Michael Lawton, Jes-
sica Ash, Benjamine Liu, Samuel Evetts, Lucinda
Hopkins-Jones, Suppalak Lewis, Catherine Bresner,
Ana Belen Malpartida, Nigel Williams, Steve Gen-
tlemen, Richard Wade-Martins, Brent Ryan, Alejo
Holgado-Nevado, Michele Hu, Yoav Ben-Shlomo,
Donald Grosset, and Simon Lovestone. 2022. Identi-
fication of a possible proteomic biomarker in Parkin-
son’s disease: discovery and replication in blood,
brain and cerebrospinal fluid. Brain Communica-
tions, 5(1):fcac343.

Huabin Zhu, Henrique Lemos, Brinda Bhatt, Bianca N.
Islam, Abhijit Singh, Ashish Gurav, Lei Huang, Dar-
ren D. Browning, Andrew Mellor, Sadanand Fulzele,
and Nagendra Singh. 2017. Carbidopa, a drug in
use for management of Parkinson disease inhibits
T cell activation and autoimmunity. PLoS ONE,
12(9):e0183484.

https://www.nejm.org/doi/full/10.1056/nejmoa033447
https://www.nejm.org/doi/full/10.1056/nejmoa033447
https://doi.org/10.1007/s00702-018-1910-4
https://doi.org/10.1007/s00702-018-1910-4
https://doi.org/10.1007/s00702-018-1910-4
https://doi.org/10.1002/mds.27232
https://doi.org/10.1002/mds.27232
https://doi.org/10.1002/mds.27232
https://doi.org/10.1002/mds.27232
https://doi.org/10.1016/S0896-6273(00)80192-0
https://doi.org/10.1016/S0896-6273(00)80192-0
https://doi.org/10.1016/S0896-6273(00)80192-0
https://doi.org/10.1016/j.xcrm.2022.100661
https://doi.org/10.1016/j.xcrm.2022.100661
https://doi.org/10.18632/oncotarget.27525
https://doi.org/10.18632/oncotarget.27525
https://doi.org/10.18632/oncotarget.27525
https://doi.org/10.18632/oncotarget.27525
https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<668::AID-BIES10>3.0.CO;2-X
https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<668::AID-BIES10>3.0.CO;2-X
https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<668::AID-BIES10>3.0.CO;2-X
https://doi.org/10.1007/s12264-017-0183-5
https://doi.org/10.1007/s12264-017-0183-5
https://doi.org/10.1007/s00702-017-1686-y
https://doi.org/10.1007/s00702-017-1686-y
https://doi.org/10.1093/braincomms/fcac343
https://doi.org/10.1093/braincomms/fcac343
https://doi.org/10.1093/braincomms/fcac343
https://doi.org/10.1093/braincomms/fcac343
https://doi.org/10.1371/journal.pone.0183484
https://doi.org/10.1371/journal.pone.0183484
https://doi.org/10.1371/journal.pone.0183484

