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Allocating limited resources

• Objective: maximize social welfare subject to supply constraints

• Additional challenge: 

⎼ Incentivize participants to report values truthfully.

⎼ Can achieve in computationally simple offline settings  

 using payments      

 via the “VCG mechanism”

v1(            ) = $10

v1(             ) = $8

v2(       ) = $5

v3(        ) = $5

v3(               ) = $7

SupplyDemandSocial Welfare = σbuyers 𝑖
value of buyer 𝑖 from allocation



Some computationally simple settings

• Matching a.k.a. unit-demand buyers

• Interval packing

    Items have a total ordering and buyers only assign values to intervals.

S
u

p
p

ly

𝑣 𝑆 = max
𝑖∈𝑆

𝑣𝑖



Focus of this work: online arrivals

• Upon each arrival, the algorithm makes an irrevocable allocation 

(and charges an irrevocable price)

Examples:

⎼ Online shopping sites

⎼ Airline/hotel reservations

⎼ Spot markets for cloud resources

… 

v1(            ) = $10

v1(             ) = $8

v2(       ) = $5

v3(        ) = $5

v3(               ) = $100

SupplyDemand



Focus of this work: online arrivals

• Upon each arrival, the algorithm makes an irrevocable allocation                             

(and charges an irrevocable price)

Algorithmic challenge: online algorithm that is competitive against hindsight OPT

Economic challenge: buyers shouldn’t misreport values and shouldn’t delay arrival.

Without further assumptions, no reasonable solution.



A stochastic-online model

• 𝑛 buyers; values drawn from known independent distributions; arrive in adversarial order.

Initial input: 
𝑛 distributions

𝒟1

𝒟2

𝒟3

Stochastic step: 
values instantiated

𝑣1~𝒟1

𝑣2~𝒟2

𝑣3~𝒟3

Adversarial step:
order of arrival

𝑣1

𝑣2

𝑣3



A simpler stochastic-online model

• 𝑛 buyers with known values; “appear” independently with known probability; arrive in adv. order.

Initial input: 
𝑛 distributions

𝑣1 w.p. 𝑞1

Stochastic step: 
some buyers “appear”

𝑣1

𝑣3

Adversarial step:
order of arrival

𝑣1

𝑣3

𝑣2 w.p. 𝑞2

𝑣3 w.p. 𝑞3



Questions

• Can we design an online allocation algorithm that is competitive against the hindsight OPT?

• Can we design an online mechanism that is incentive compatible and competitive?

Hindsight OPT = E𝑣~𝒟[SW(optimal−alloc 𝑣 )]
Gap?



An outline for the rest of the talk

• The simple single-item case a.k.a. prophet inequality

• Pricing as an online mechanism

• Two approaches:

⎼ Dual prices

⎼ Balanced prices

• Challenges

• Overcoming challenges for interval scheduling

• Results & open questions



The simplest setting: single item for sale

• An online algorithm is just a stopping rule.

U[0,2] 1 w.p. ½
3 w.p. ½

100 w.p. 0.01
0 w.p. 0.99

1.6 1

a.k.a. prophet inequality



The simplest setting: single item for sale           a.k.a. prophet inequality

• An online algorithm is just a stopping rule.

• No online algorithm can be better than 2-competitive.

• [Krengel Sucheston Garling’78; Samuel-Cahn’84]: There exists a threshold t                                                              

such that accepting the first reward ≥ t is 2-competitive.

• Obviously incentive compatible; No gap between online algorithms and online mechanisms!

ൗ1
𝜖  w.p. ϵ

0 w.p. 1 − 𝜖

1

OPT = 𝜖.
1

𝜖
+ 1 − 𝜖 . 1 = 2 − 𝜖

ALG = 1

Economic interpretation:
The threshold is like a 
price tag on the item.



(Aside) Further work on prophet inequalities

• Prophet inequality ≡ Stochastic online subset selection subject to a feasibility constraint.

   [Hajiaghayi Kleinberg Sandholm’07; C. Hartline Malec Sivan’10; Kleinberg Weinberg’12; 

 Alaei Hajiaghayi Liaghat’12; Azar Kleinberg Weinberg’14; Duetting Kleinberg’15;

 Feldman Svensson Zenklusen’15; Rubinstein’16; Duetting Feldman Kesselheim 

Lucier’17; Rubinstein Singla’17; …]

• Online resource allocation is different:

⎼ Commit to allocation; not just accept/reject

⎼ Commit to payment



The grocery store mechanism

• Each buyer purchases her “favorite bundle” while supplies last.

• Obviously incentive compatible (assuming prices don’t change over time)

v1(            ) = $10

v1(             ) = $8

The buyer purchases argmax
𝑆

𝑣 𝑆 − 𝑝(𝑆)



Prices as dual variables

• Complementary slackness implies 𝑥𝑖,𝑆 > 0 iff 𝑆 is one of 𝑖’s favorite bundles under the pricing 𝑝.

max 

𝑖,𝑆

𝑥𝑖,𝑆𝑣𝑖,𝑆

subject to: 



𝑆

𝑥𝑖,𝑆 ≤ 𝑞𝑖 for all buyers 𝑖



𝑖, 𝑆∋𝑗

𝑥𝑖,𝑆 ≤ 1 for all items 𝑗

𝑥𝑖,𝑆 ≥ 0 for all 𝑖 and 𝑆

𝑣𝑖,𝑆: buyer 𝑖’s value for set 𝑆

𝑞𝑖: buyer 𝑖’s probability of arrival

𝑥𝑖,𝑆: buyer 𝑖’s prob. of receiving set 𝑆

PRIMAL

min 

𝑗

𝑝𝑗 + 

𝑖

𝑢𝑖𝑞𝑖

subject to: 



𝑗∈𝑆

𝑝𝑗 + 𝑢𝑖 ≥ 𝑣𝑖,𝑆 for all 𝑖, 𝑆

𝑢𝑖, 𝑝𝑗 ≥ 0 for all 𝑖, 𝑗

DUAL

In an optimal solution, 𝑢𝑖 = max
𝑆

𝑣𝑖,𝑆 − σ𝑗∈𝑆 𝑝𝑗

Seller’s revenue

Buyers’ utility



How good are dual prices?

Problem 1: dual prices are usually too low.

Problem 2: complementary slackness is not always useful due to the stochasticity of arrivals.

ൗ1
𝜖2  w.p. ϵ1 w.p. 1 − 𝜖

OPT = 𝜖.
1

𝜖2 + 1 − 𝜖 2. 1 > Τ1
𝜖 ALG = 1 − 𝜖 . 1 + 𝜖2.

1

𝜖2 < 2

LP = 𝜖.
1

𝜖2 + (1 − 𝜖). 1 > Τ1
𝜖 Dual price = 1

ൗ1
2

ൗ1
2

1

Buyer shifts preferences based on availability 
         and has a new favorite set.



A second approach: balanced prices                     [Feldman Gravin Lucier’15]

• Contribution of item 𝑗 to optimal SW = σ𝑖 𝑣𝑖,𝑗𝑥𝑖,𝑗.

• Set the price for item 𝑗 to 𝑝𝑗 = Τ1
2 σ𝑖 𝑣𝑖,𝑗𝑥𝑖,𝑗.

• The prices are not too low:

 If item 𝑗 gets sold, then seller’s revenue from 𝑗 = 𝑝𝑗 

• The prices are not too high:

 If item 𝑗 does not get sold, then any buyer 𝑖’s utility ≥ 𝑣𝑖,𝑗 − 𝑝𝑗.

 ⇒ Total utility “attributed to item 𝑗” ≥ σ𝑖 𝑥𝑖,𝑗 𝑣𝑖,𝑗 − 𝑝𝑗 = 𝑝𝑗.

• Social Welfare = Seller’s revenue + buyers’ utility

max 

𝑖,𝑗

𝑥𝑖,𝑗𝑣𝑖,𝑗

subject to: 



𝑗

𝑥𝑖,𝑗 ≤ 𝑞𝑖 for all buyers 𝑖



𝑖

𝑥𝑖,𝑗 ≤ 1 for all items 𝑗

𝑥𝑖,𝑗 ≥ 0 for all 𝑖 and 𝑗

[Kleinberg Weinberg’12]



How good are balanced prices?

• Not very good when buyers desire bundles. [FGL’15]

• OPT = $ 𝑛 − 1

• Any “static item pricing” must price every item at > $1 to exclude buyer 1                                                

but then also excludes buyer 2.

• ALG = $1

𝑣1 any single item = $1 𝑣2 all 𝑛 items = $ 𝑛 − 1
𝑣2 any other set = $0

𝑛 items



The interval scheduling setting

• Items are totally ordered; buyers desire intervals.

Two main results:

• Can design competitive mechs using balanced prices if we allow bundling

                      [C. Miller Teng’19]

• Can design competitive mechs using dual prices if we have large supply (and some other assumptions)

          [C. Devanur Holroyd Karlin Martin Sivan’17]
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The static bundle pricing grocery store mechanism

• Partition supply into “bundles” and price each bundle.

• Each buyer purchases her “favorite bundle” while supplies last.

v1(            ) = $10

v1(             ) = $8

The buyer purchases argmax
𝑆

𝑣 𝑆 − 𝑝(𝑆)



Leveraging balanced prices through bundling

• Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles. 

Then leverage FGL’s balanced pricing approach.

• A fractional unit allocation is:

1. A partition of items into bundles

2. A fractional matching from buyers to bundles

• Question: how does the new value (σ𝑖,𝑆 𝑦𝑖,𝑆𝑣𝑖,𝑆) compare to                                                                          

the original LP value (σ𝑖,𝑆 𝑥𝑖,𝑆𝑣𝑖,𝑆)?



𝑆

𝑥𝑖,𝑆 ≤ 𝑞𝑖  for all buyers 𝑖



𝑖, 𝑆∋𝑗

𝑥𝑖,𝑆 ≤ 1 for all items 𝑗

𝑥𝑖,𝑆 ≥ 0 for all 𝑖 and 𝑆

ℬ is a partition of items into bundles



𝑆∈ℬ

𝑦𝑖,𝑆 ≤ 𝑞𝑖  for all buyers 𝑖



𝑖

𝑦𝑖,𝑆 ≤ 1 for all sets 𝑆 ∈ ℬ

𝑥𝑖,𝑆 ≥ 0 for all 𝑖 and 𝑆

Original fractional solution 

Fractional unit allocation 



Leveraging balanced prices through bundling

• Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles. 

Then leverage FGL’s balanced pricing approach.

• A fractional unit allocation is:

1. A partition of items into bundles

2. A fractional matching from buyers to bundles

       ⟹ O ൗlog 𝐿
log log 𝐿 -competitive mechanism using static bundle pricing.

• [Im Wang’13]: No online algorithm can be o ൗlog 𝐿
log log 𝐿 -competitive for interval scheduling.

Main claim: When all buyers desire bundles of size up to L, there exists a fractional 

      unit allocation that loses at most an O ൗlog 𝐿
log log 𝐿  fraction of social welfare.



Large supply settings

• Can we obtain better competitive ratios when we have multiple copies of items?

log 𝐿

log log 𝐿

O(1)

log 𝐿 poly(𝐿, 1/𝜖)1

Prophet inequality for identical items

Static pricing: 1 − O ൗlog 𝑘
𝑘  [Hajiaghayi Kleinberg Sandholm’07]

General online mechs: 1 − 1/ 𝑘 + 3  [Alaei’11]

2

poly(1/𝜖)

1 + 𝜖

Upper bound via static pricing: 𝑂
1

𝑘

log 𝐿

(log log 𝐿−log 𝑘)

Lower bound using IW’13: Ω
1

𝑘

log 𝐿

log log 𝐿

Single item Unit-demand buyers; L=1 (*)
Intervals up to length L(*)

(*) Using dual prices;
      under additional assumptions

Item supply 𝑘
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Leveraging dual prices by appealing to large supply

• Unit-demand buyers; 𝑛 items; 𝑘 ≈ poly Τ1
𝜖  copies of every item.

Basic idea:

• Scale down the supply by a (1 − 𝜖) factor; compute dual prices; make primal-based assignments.

• Then for any individual item, Pr[ realized demand > Τ1
1−𝜖 fractional demand ] is small.

• Problem: when the failure event happens for an item, future buyers’ favorite item may change;         

We can no longer implement primal-based assignments.                                                                            

⟹ Likelihood of other failure events may increase.

• Our approach: track buyers’ preferences orderings over items.

failure event



The “forwarding” graph

• The forwarding graph as a function of dual prices:

⎼ Nodes are items

⎼ ∃ a directed edge from 𝑗1 to 𝑗2 if 𝑗1 and 𝑗2 appear consecutively in some buyer’s preference ordering. 

• Issue: when 𝑗1 has a failure event, it “forwards” buyers along its outgoing edges, potentially 

causing failure events at their endpoints.

• Assumption: Each buyer is single-valued over some contiguous set of items.                                               

             That is, 𝑣𝑖 𝑗 = 𝑣𝑖 ∀𝑗 ∈ 𝑆𝑖 and 𝑣𝑖 𝑗 = 0 ∀𝑗 ∉ 𝑆𝑖, where 𝑆𝑖 is an interval.

• Observation: Under these assumptions this forwarding graph behaves like a low in-degree tree.

 Implication: For any item, Pr[ realized demand > Τ1
1−𝜖 fractional demand ] is ≤ 𝜖.

⟹ Every buyer gets their LP allocation with high probability.



Bounding the failure probabilities on a forwarding graph

1. The forwarding graph 2. Instantiation of buyers;   
     forwarding paths

3. Consider all possible forwarding subtrees of G. The load in 
picture 2 can be bounded by the load in one of these subtrees. 

4. Tree networks permit an inductive analysis. Failure probabilities depend on the in-degrees of nodes.



A summary of results for the interval scheduling setting

log 𝐿

log log 𝐿

O(1)

log 𝐿 poly(𝐿, 1/𝜖)1

2

poly(1/𝜖)

1 + 𝜖

Upper bound via static pricing: 𝑂
1

𝑘

log 𝐿

(log log 𝐿−log 𝑘)

Lower bound using IW’13: Ω
1

𝑘

log 𝐿

log log 𝐿

Single item Unit-demand buyers; L=1 (*)
Intervals up to length L(*)

(*) Using dual prices;
      under additional assumptions

Item supply 𝑘
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Other results…

• Balanced item prices:

⎼ Unit demand buyers – tight competitive ratio of 2 [Feldman Gravin Lucier’15]

⎼ XOS or fractionally subadditive valuations – tight competitive ratio of 2 [Feldman Gravin Lucier’15]

⎼ MPH-𝑘 values – factor of 𝑘; tight for static item pricing [Duetting Feldman Kesselheim Lucier’17]

•  Balanced bundle prices:

⎼ Interval packing – tight competitive ratio [C. Miller Teng’19]

⎼ Packing paths in trees – nearly tight ratio [C. Miller Teng’19]

• Dual prices:

⎼ Interval packing with large supply and some other assumptions

In many settings, static pricing is near optimal!

(*) within constant factors



Some open directions

• Can bundling help obtain tight competitive ratios for other kinds of valuation functions?

 e.g. the MPH hierarchy?

        single-minded buyers? (The LP may be too weak.)

• A (1 − 𝜖) competitive mechanism for more general large supply settings?

 What about unit-demand buyers?

 Static pricings won’t help. [C. Teng]

• Can we efficiently compute/learn prices?

• Other online mechanism design problems? E.g. revenue maximization.
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