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- Stability of service under time-of-use pricing. C., Devanur, Holroyd, Karlin, Martin, and Sivan. STOC'17.
- Combinatorial auctions via posted prices, Feldman, Gravin, and Lucier. SODA’15.



Allocating limited resources

* Objective: maximize social welfare subject to supply constraints

Social Welfare = value of buyer i from allocation Demand | Supply
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 Additional challenge:

— Incentivize participants to report values truthfully. Ooe O ‘
— Can achieve in computationally simple offline settings .@

using payments
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via the “VCG mechanism”




Some computationally simple settings
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* Matching a.k.a. unit-demand buyers [ ©

v(S) = max v; O
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* Interval packing

[tems have a total ordering and buyers only assign values to intervals.

Supply




Focus of this work: online arrivals

* Upon each arrival, the algorithm makes an irrevocable allocation
(and charges an irrevocable price)

Demand | Supply

Examples:
— Online shopping sites
— Airline /hotel reservations

— Spot markets for cloud resources




Focus of this work: online arrivals

» Upon each arrival, the algorithm makes an irrevocable allocation
(and charges an irrevocable price)

Algorithmic challenge: online algorithm that is competitive against hindsight OPT

Economic challenge: buyers shouldn’t misreport values and shouldn’t delay arrival.

Without further assumptions, no reasonable solution.



‘ A stochastic-online model

* n buyers; values drawn from known independent distributions; arrive in adversarial order.

Initial input:
n distributions
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Stochastic step:
values instantiated
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Adversarial step:
order of arrival
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‘ A simpler stochastic-online model

* n buyers with known values; “appear” independently with known probability; arrive in adv. order.

Initial input: Stochastic step: Adversarial step:
n distributions some buyers “appear” order of arrival

2 . 2 . g .
‘® 1 W.p- 41 ‘© 1 ‘

7, . ©
@ " e

9 O
o v

%f‘if V3 Wp. g3 ‘® 3




Questions

» Can we design an online allocation algorithm that is competitive against the hindsight OPT?

Hindsight OPT = E,,.[SW(optimal—alloc(v))]

Gap?

* Can we design an online mechanism that is incentive compatible and competitive? /




An outline for the rest of the talk

* The simple single-item case a.k.a. prophet inequality
* Pricing as an online mechanism

* Two approaches:
— Dual prices

— Balanced prices

* Challenges
* Overcoming challenges for interval scheduling

* Results & open questions



‘ The simplest setting: single item for sale a.k.a. prophet inequality

* An online algorithm is just a stopping rule.
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The simplest setting: single item for sale a.k.a. prophet inequality

* An online algorithm is just a stopping rule.

224 OPT=e2+(1—€).1=2—¢
{ \ }
ALG =1
1 1/6 W.p. €
Owp.1—¢€
* No online algorithm can be better than 2-competitive. Economic interpretation:

The threshold is like a

* [Krengel Sucheston Garling’78; Samuel-Cahn’84]: There exists a threshold t _ :
price tag on the item.

such that accepting the first reward = t is 2-competitive.

* Obviously incentive compatible; No gap between online algorithms and online mechanisms!



(Aside) Further work on prophet inequalities

* Prophet inequality = Stochastic online subset selection subject to a feasibility constraint.

[Hajiaghayi Kleinberg Sandholm’07; C. Hartline Malec Sivan’10; Kleinberg Weinberg’'12;
Alaei Hajiaghayi Liaghat'12; Azar Kleinberg Weinberg'14; Duetting Kleinberg’15;
Feldman Svensson Zenklusen'15; Rubinstein’16; Duetting Feldman Kesselheim
Lucier’17; Rubinstein Singla’17; ...]

* Online resource allocation is different:
— Commit to allocation; not just accept/reject

— Commit to payment



The grocery store mechanism

* Each buyer purchases her “favorite bundle” while supplies last.

* Obviously incentive compatible (assuming prices don’t change over time)
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The buyer purchases argmax(v(S) — p(S))
S




Prices as dual variables

PRIMAL
4 )
max 2 xi,Svi,S
i,S
subject to:
z Xis < q; forall buyers i
S
z xis <1 forallitemsj
i,S3j
Xis =0 foralliand S
- /

DUAL

V; s: buyer i’s value for set S

q;: buyer i’s probability of arrival

X; s: buyer i’s prob. of receiving set S

-

subject to:
JES
ui,pj > 0

-

v
minz Dj + Zuiqi
j [

> v;¢ foralli,§

Seller’s revenue

Buyers’ utility

[

foralli,j
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In an optimal solution, u; = mé':lx(vi,s — ZjeS Pj)

 Complementary slackness implies x; ¢ > 0 iff S is one of i's favorite bundles under the pricing p.



‘ How good are dual prices?

Problem 1: dual prices are usually too low.
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Problem 2: complementary slackness is not always useful due to the stochasticity of arrivals.
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< O 1 / Buyer shifts preferences based on availability
‘@ 2 and has a new favorite set.
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A second approach: balanced prices [Feldman Gravin Lucier’15]
[Kleinberg Weinberg’12]

* Contribution of item j to optimal SW = }; v; ;x; ;.

4 )
* Set the price for item j top; = 1/, X v; jx; ;. maxz Xi jVi j
Lj
subject to:
* The prices are not too low: 2 x;; < q; forall buyersi

J
in,j <1 forallitemsj
i
xij=0 foralli and j y

[f item j gets sold, then seller’s revenue from j = p;

The prices are not too high:

If item j does not get sold, then any buyer i’s utility = v; ; — p;. \_

= Total utility “attributed to item j” = }; x; j(vi, i—D j) =p;.

Social Welfare = Seller’s revenue + buyers’ utility



How good are balanced prices?

* Not very good when buyers desire bundles. [FGL'15]

n items O O
© ©

v, (any single item) = $1 v,(all nitems) = $(n — 1)
v,(any other set) = $0

«- OPT=$(n—-1)

* Any “static item pricing” must price every item at > $1 to exclude buyer 1
but then also excludes buyer 2.

« ALG=$1



The interval scheduling setting

* [tems are totally ordered; buyers desire intervals.

Supply

Two main results:

 Can design competitive mechs using balanced prices if we allow bundling

[C. Miller Teng' 19]

 Can design competitive mechs using dual prices if we have large supply (and some other assumptions)

[C. Devanur Holroyd Karlin Martin Sivan’17]



The static bundle pricing grocery store mechanism

* Partition supply into “bundles” and price each bundle.

 Each buyer purchases her “favorite bundle” while supplies last.

The buyer purchases argmax(v(S) — p(S))
S




Leveraging balanced prices through bundling

» Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles.

Then leverage FGL's balanced pricing approach. Original fractional solution
(Z x;s < q; forall buyers 1
* A fractional unit allocation is: 5
1. A partition of items into bundles Z %5 =1 forall items j
2. A fractional matching from buyers to bundles lxijz 0 foralliand S |

\_

Fractional unit allocation

r p
B is a partition of items into bundles

Z yis < q; forall buyersi
SEB

Zyl"g <1 forallsetsS € B
i

* Question: how does the new value (3; 5 v; sv; ) compare to

the original LP value ();; 5 x; sv; )?

Xis =0 foralliand S




Leveraging balanced prices through bundling

* Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles.
Then leverage FGL's balanced pricing approach.

* A fractional unit allocation is:
1. A partition of items into bundles

2. A fractional matching from buyers to bundles

Main claim: When all buyers desire bundles of size up to L, there exists a fractional
unit allocation that loses at most an O(log L/log log ,) fraction of social welfare.

— 0('°8 */1og 1og 1) -competitive mechanism using static bundle pricing.

* [Im Wang'13]: No online algorithm can be o(log L/loglog L)-competitive for interval scheduling.



Competitive ratio

Large supply settings

» Can we obtain better competitive ratios when we have multiple copies of items?

‘ Static pricing: 1 — O( ’lng k> [Hajiaghayi Kleinberg Sandholm’07]

Prophet inequality for identical items

log L
loglog L General online mechs: 1 — 1/vk + 3 [Alaei'11]
(*) Using dual prices;
Upper bound via static pricing: O (1 s ) d dditi 1 .
pp G e 1) under additional assumptions
0(1)
. ’ lo
2 \ Lower bound using IW’'13: Q (iﬁ)
1+e€ Sk Unit-demand buyers; L=1 (*) .Intervals up to length L(*)
1 poly(1/¢€) log L poly(L,1/¢€)

Item supply k



Leveraging dual prices by appealing to large supply

+ Unit-demand buyers; n items; k =~ poly(1/¢) copies of every item.
Basic idea:

* Scale down the supply by a (1 — €) factor; compute dual prices; make primal-based assignments.

* Then for any individual item, Pr[@ealized demand > 1/;__ fractional demancD is small.

failure event

* Problem: when the failure event happens for an item, future buyers’ favorite item may change;
We can no longer implement primal-based assignments.
= Likelihood of other failure events may increase.

* Our approach: track buyers’ preferences orderings over items.



1

The “forwarding” graph / \

The forwarding graph as a function of dual prices: \ /

— Nodes are items

— d adirected edge from j; to j, if j; and j, appear consecutively in some buyer’s preference ordering.

Issue: when j; has a failure event, it “forwards” buyers along its outgoing edges, potentially
causing failure events at their endpoints.

Assumption: Each buyer is single-valued over some contiguous set of items.
Thatis, v;(j) = v; Vj € S; and v;(j) = 0 Vj € S;, where S; is an interval.

Observation: Under these assumptions this forwarding graph behaves like a low in-degree tree.

{ Implication: For any item, Pr[ realized demand > 1/, _, fractional demand ] is < e. }

= Every buyer gets their LP allocation with high probability.



‘ Bounding the failure probabilities on a forwarding graph
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1. The forwarding graph
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2. Instantiation of buyers;
forwarding paths

/N /N \ \

/ \ / N
. g 0 0
Q/ \@ gﬂ ? QS@ Q@K\@

3. Consider all possible forwarding subtrees of G. The load in
picture 2 can be bounded by the load in one of these subtrees.

4. Tree networks permit an inductive analysis. Failure probabilities depend on the in-degrees of nodes.




Competitive ratio

A summary of results for the interval scheduling setting

log L
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\ Lower bound using IW’13: Q (
Single item Unit-demand buyers; L=1 (*)

Upper bound via static pricing: O (

(*) Using dual prices;
under additional assumptions
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Other results...

* Balanced item prices:
— Unit demand buyers - tight competitive ratio of 2 [Feldman Gravin Lucier’15]
— XOS or fractionally subadditive valuations - tight competitive ratio of 2 [Feldman Gravin Lucier’15]

— MPH-k values - factor of k; tight for static item pricing [Duetting Feldman Kesselheim Lucier’17]

» Balanced bundle prices:
— Interval packing - tight competitive ratio [C. Miller Teng’19]

— Packing paths in trees - nearly tight ratio [C. Miller Teng’'19]

* Dual prices:

— Interval packing with large supply and some other assumptions

In many settings, static pricing is near optimal!

(*) within constant factors



Some open directions

* Can bundling help obtain tight competitive ratios for other kinds of valuation functions?
e.g. the MPH hierarchy?

single-minded buyers? (The LP may be too weak.)

* A (1 — €) competitive mechanism for more general large supply settings?
What about unit-demand buyers?

Static pricings won't help. [C. Teng]
 Can we efficiently compute/learn prices?

* Other online mechanism design problems? E.g. revenue maximization.
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