Competitive Analysis meets Stochastic Input: Secretary problems and Prophet inequalities

SHUCHI CHAWLA

Online maximum weight bipartite matching

Ad · https://www.nike.com/official : The Nike Tennis Collection - Shop Tennis Shoes

Competing against the hindsight optimum is hopeless in the worst case!

Incorporating data into the worst case model...

This talk

Purely worst-case

No information about input

Too pessimistic; Algorithms fine-tuned to unreasonable worst-case instances

Partial information a.k.a. semi-random models

- Coarse/limited info about input distribution
- Input distribution unknown but from a "nice" class
- Input distribution unknown but we have sample access.
- Input is part stochastic and part adversarial

Ellen's tall

Purely stochastic

Full information about the input generation process

Too optimistic; Algorithms not robust to changes in model

· Anupam's talk

Online selection

4

- *n* elements arrive in sequence; each with weight W_i .
- Algorithm makes irrevocable accept/reject decision for each element. $S \leftarrow$ accepted elements
- We require $S \in \mathcal{F}$ for a given downwards closed feasibility constraint \mathcal{F} .

Online selection: semi-random models

- *n* elements arrive in sequence; each with weight W_i .
- Algorithm makes irrevocable accept/reject decision for each element. $S \leftarrow$ accepted elements
- We require $S \in \mathcal{F}$ for a given downwards closed feasibility constraint \mathcal{F} .

The Secretary Problem setting: [Dynkin'63]

- Weights are adversarial
- Arrival order is uniformly random

Hindsight OPT = $\max_{i} W_i$

- The Prophet Inequality setting: [Krengel & Sucheston'77, Samuel-Cahn'84]
- Weights drawn from known distributions

• Arrival order is adversarial

Hindsight OPT = $E\left[\max_{i} W_{i}\right]$

Competitive Ratio = $\max_{\text{instances I}} \frac{E_{\text{randomness in I}}[\text{Hindsight}-\text{OPT}(I)]}{E_{\text{randomness in I, ALG}}}$

Upshot: Unlike for the purely worst case, these models admit constant competitive ratios.

Rest of this talk

- Prophet inequalities
 - Contention Resolution Schemes
 - Combinatorial approaches
 - Online resource allocation
- Secretary problem
 - Explore and exploit
 - Learning duals
 - Learning the primal
- Some extensions

Prophet Inequality for single unit

Model:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$

- Hindsight-OPT = $E\left[\max_{i} W_{i}\right] = \sum_{i} x_{i} E[W_{i} | \text{ OPT selects } i]$
- Let $x_i = \Pr[\text{OPT selects } i]$

Idea: try to mimic the optimal probabilities of selection.

[Chawla Hartline Malec Sivan'10, Alaei'11]

- When element 1 arrives, accept w.p. x_1
 - Set acceptance threshold t_1 such that $\Pr[W_1 \ge t_1] = x_1$. Note: $E[W_1|W_1 \ge t_1] \ge E[W_1 | \text{ OPT selects } 1]$
- When element 2 arrives, accept w.p. x_2 . (Set threshold t_2 such that $Pr[W_2 \ge t_2] = x_2$.)
- And so on...

ALG =
$$\sum_{i} \Pr[\text{ALG reaches } i] \cdot x_i \cdot E[W_i | W_i \ge t_i]$$

??

Prophet Inequality for single unit

• Hindsight-OPT = $E\left[\max_{i} W_{i}\right] = \sum_{i} x_{i} E[W_{i} | \text{ OPT selects } i]$

Model:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$

- Idea: try to mimic the optimal probabilities of selection.
 - [Chawla Hartline Malec Sivan'10, Alaei'11]

• When element 1 arrives, accept w.p. $x_1/2$

• Let $x_i = \Pr[\text{OPT selects } i]$

- Set acceptance threshold t_1 such that $\Pr[W_1 \ge t_1] = \frac{x_1}{2}$. Note: $E[W_1|W_1 \ge t_1] \ge E[W_1 | \text{ OPT selects } 1]$
- When element 2 arrives, accept w.p. $x_2/2$. (Set threshold t_2 such that $\Pr[W_2 \ge t_2] = x_2/2$.)
- And so on...

ALG =
$$\sum_{i} \Pr[\text{ALG reaches } i] \cdot x_i/2 \cdot \mathbb{E}[W_i | W_i \ge t_i] \ge \frac{1}{4} \sum_{i} x_i \mathbb{E}[W_i | \text{ OPT selects } i]$$

??
= 1 - Pr[a previous element was accepted] $\ge 1 - \sum_i x_i/2 \ge 1/2$

Prophet Inequality for single unit

• Hindsight-OPT = $E\left[\max_{i} W_{i}\right] = \sum_{i} x_{i} E[W_{i} | \text{OPT selects } i]$

Model:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$

Idea: try to mimic the optimal probabilities of selection.

[Chawla Hartline Malec Sivan'10, Alaei'11]

Slightly better approach:

• Let $x_i = \Pr[\text{OPT selects } i]$

- Accept each element *i* with probability exactly $x_i/2$
 - Compute probability of reaching element $i \leftarrow \alpha_i$
 - Set acceptance threshold t_i such that $\Pr[W_i \ge t_i] = x_i/2\alpha_i$. Note: $\alpha_i \ge 1/2$, so, $E[W_i|W_i \ge t_i] \ge E[W_i | \text{ OPT selects } i]$

ALG =
$$\sum_{i} \Pr[ALG \text{ reaches } i] \cdot \frac{x_i}{2\alpha_i} \cdot E[W_i | W_i \ge t_i] \ge \frac{1}{2} \sum_{i} x_i E[W_i | \text{ OPT selects } i]$$

 α_i
Tight!

Prophet Inequality for matchings

Model:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$
- Hindsight-OPT = E[max weight matching] = $\sum_{i} x_i E[W_i | \text{OPT selects } i]$
- Let $x_i = \Pr[\text{OPT selects } i]$

Idea: try to mimic the optimal probabilities of selection.

[Chawla Hartline Malec Sivan'10, Alaei'11]

Simple "collision-avoidance" algorithm:

- When element *i* arrives, if feasible to accept, then accept w.p. $x_i/3$
- $\Pr[i \text{ remains unblocked}] \ge 1 \Pr[i' \text{s first end point is matched}] \Pr[i' \text{s second end point is matched}] \ge 1 \frac{1}{3} \frac{1}{3} = \frac{1}{3}$

ALG =
$$\sum_{i} \Pr[i \text{ remains unblocked when reached}] \cdot \frac{x_i}{3} \cdot E[W_i | W_i \ge t_i] \ge \frac{1}{9} \sum_{i} x_i E[W_i | \text{ OPT selects } i] \ge \frac{1}{3}$$

A general approach: OCRS

- Let $x_i = \Pr[\text{OPT selects } i]$
- Hindsight-OPT = $\sum_i x_i E[W_i | \text{OPT selects } i]$
- c Online Contention Resolution Scheme:

[Chekuri Vondrak Zenklusen'14, Feldman Svensson Zenklusen'16]

- Online procedure for determining the probability of accepting an element that arrives, if unblocked.
- Goal: Accept each element *i* with probability $y_i \coloneqq c. x_i$
- Show: Each element remains unblocked with probability $\geq c$.

ALG =
$$\sum_{i} y_i \cdot E[W_i | W_i \ge t_i] \ge \sum_{i} c \cdot x_i E[W_i | \text{OPT selects } i$$

 $\text{c-OCRS} \Longrightarrow \text{c-competitive Prophet Inequality}$

OCRSs exist for many set systems. k-unit: $(1 - 1/\sqrt{k+3})$ -OCRS [Alaei'11]; General matroids: ½-OCRS [Feldman Svensson Zenklusen'16].

[Lee-Singla'18]: Prophet Inequalities and OCRS are essentially equivalent

Model:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$

Idea: try to mimic the optimal probabilities of selection.

Combinatorial approaches

Model:

Elements arrive in fixed but arbitrary order

t if the unit sells $W_i - t$ if the unit is sold to i

• Weights are drawn from known distributions: $W_i \sim D_i$

[Samuel-Cahn'84]: 2-competitive single-unit Prophet Inequality

- Find a threshold *t* such that $\Pr[\exists i \text{ with } W_i \ge t] = \frac{1}{2}$. Alternatively: Set $t = \frac{1}{2}$ OPT

Proof approach: break up the reward earned into "seller's revenue" and "buyer's utility" [Feldman Gravin Lucier'15]

 $OPT \le t + \max_{i} (W_{i} - t)^{+} \quad \text{whereas} \quad ALG \ge t. \Pr[\text{unit sells}] + \sum_{i} (W_{i} - t)^{+}. \Pr[\text{unit didn't sell before } i]$ $\ge t. \Pr[\text{unit sells}] + \sum_{i} (W_{i} - t)^{+}. \Pr[\text{unit doesn't sell}]$ $\ge \frac{1}{2}t + \frac{1}{2}\sum_{i} (W_{i} - t)^{+} \qquad \Rightarrow 2\text{-approximation}$

Combinatorial approaches

Model:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$

[Samuel-Cahn'81]: 2-competitive single-unit Prophet Inequality

- Find a threshold *t* such that $Pr[\exists i \text{ with } W_i \ge t] = \frac{1}{2}$.
- Pick the first element that exceeds *t*

Extensions to *k*-units with static thresholds:

• [Hajiaghayi Kleinberg Sandholm'07] pick t such that $E[\#i \text{ with } W_i \ge t] \approx k - \sqrt{k \log k}$.

 $\Rightarrow 1 - \Theta(\sqrt{\log k / k})$ asymptotically

• [Chawla Lykouris Devanur'21] pick *t* such that E[fraction of units unsold] = Pr[all units sold out]

 $\Rightarrow 1 - \Theta(\sqrt{\log k / k})$ for all k

Extension to matroids: "Balanced" thresholds [Kleinberg Weinberg'12]

- Set $t_i = \frac{1}{2}$. the expected "opportunity cost" of accepting *i*.
- 2-approximation for general matroids

Alternatively: Set $t = \frac{1}{2}$ OPT

Another alternative: pick any value between the two!

Benefits of a single static threshold:

- One parameter to learn
- Robustness to errors
- Nice fairness & incentive properties

Downside: not always optimal

Online resource allocation

 Can use the matching OCRS as before But can potentially do much better!

Model:

- Shoppers arrive in fixed but arbitrary order
- Weights of all edges incident on a shopper are revealed at once
- Weights drawn from known distributions: $W_{ij} \sim D_{ij}$

[Feldman Gravin Lucier'15]: pricing-based algorithm

- Set a price for item *i*, $t_i = \frac{1}{2}E[\text{contribution of } i \text{ to OPT}]$
- When shopper *j* arrives, assign to it the available item that maximizes $W_{ij} t_i \ll$

Economic interpretation: shoppers maximize their utility

- Suppose in OPT, *i* is assigned to $j^*(i)$.
- Item *i*'s contribution to the algorithm $\geq t_i$. $\mathbb{I}[\text{item } i \text{ sells}] + (W_{ij^*(i)} t_i)$. $\mathbb{I}[\text{item } i \text{ doesn't sell}]$
- Taking expectations, *i*'s contribution $\ge t_i$. Pr[*i* sells] + t_i . Pr[*i* doesn't sell] = $\frac{1}{2}$ E[contribution of *i* to OPT]

 \Rightarrow 2-approximation

Online resource allocation

 Can use the matching OCRS as before But can potentially do much better!

Model:

- Shoppers arrive in fixed but arbitrary order
- Weights of all edges incident on a shopper are revealed at once
- Weights drawn from known distributions: $W_{ij} \sim D_{ij}$

[Feldman Gravin Lucier'15]: pricing-based 2-approximation algorithm

Can extend these ideas to shoppers purchasing bundles of items

- XOS; MPH hierarchy [Feldman Gravin Lucier'15, Dutting Feldman Kesselheim Lucier'17]
- subadditive values [Dutting Kesselheim Lucier'20]
- intervals or paths in networks [Chawla Miller Teng'19]

With large item multiplicities and other structure on weights, dual prices provide a good approximation

[Chawla Devanur Holroyd Karlin Martin Sivan'17]

Rest of this talk

- Prophet inequalities
 - Contention Resolution Schemes
 - Combinatorial approaches
 - Online resource allocation
- Secretary problem
 - Explore and exploit
 - Learning duals
 - Learning the primal
- Some extensions

Secretary Problem

Model:

- Elements arrive in uniformly random order
- Weights are adversarial

k-unit secretary: explore for n/poly(k) steps $\Rightarrow 1 - O(1/\text{poly}(k))$ approximation

Improved k-unit secretary: geometrically increasing explore/exploit phases; in each phase, exploit using the thresholdlearned in previous phases $\Rightarrow 1 - O(1/\sqrt{k})$ approximation[Kleinberg'05]

Rank-k matroid: greedily pick largest feasible set crossing a single threshold $\Rightarrow O(\log k)$ approx. [Babaioff Immorlica Kleinberg'07] Best known: $O(\log \log k)$ [Lachish'15, Feldman Svensson Zenklusen'16] [Dughmi'21]: Connection between matroid secretary and matroid OCRS $\rightarrow O(1)$?

Online Resource Allocation

Basic idea: use the first few elements as a sample to "learn" the instance.

Model:

Ŋ

- Shoppers arrive in uniformly random order
- Weights of all edges incident on a shopper are revealed at once
- Weights are adversarial

Primal program:

 $\max \sum_{i,j} x_{i,j} W_{i,j} \quad \text{subject to:}$ $\sum_{j} x_{i,j} \le 1 \quad \text{for all shoppers } i$ $\sum_{i} x_{i,j} \le k_{j} \quad \text{for all items } j$ $x_{i,j} \ge 0 \quad \text{for all } i \text{ and } j$ **Dual program:**

 $\min \sum_{j} k_{j} t_{j} + \sum_{i} u_{i} \text{ subject to:}$ $u_{i} \ge W_{i,j} - t_{j} \text{ for all } i, j$ $u_{i}, p_{j} \ge 0 \qquad \text{for all } i, j$

adida

Given the "correct" dual:

- Set t_j as the price for j.
- Every shopper, on arrival, should choose the item maximizing $W_{i,j} t_j$

Dual-learning algorithm [Devanur Hayes'09, Agarwal Wang Ye'14]:

- Solve the dual program over the first ϵn samples with scaled down capacities to learn the dual prices
- Exploit using dual prices
- Concentration bounds \Rightarrow learned duals are close to the optimal dual

Online Resource Allocation

Basic idea: use the first few elements as a sample to "learn" the instance.

Model:

- Shoppers arrive in uniformly random order
- Weights of all edges incident on a shopper are revealed at once
- Weights are adversarial

Primal program:

$\max \sum_{i,j} x_{i,j}$	<i>W_{i,j}</i> subject to:
$\sum_{j} x_{i,j} \leq 1$ for all shoppers <i>i</i>	
$\sum_i x_{i,j} \le k_j$	for all items <i>j</i>
$x_{i,j} \ge 0$	for all <i>i</i> and <i>j</i>

Primal-learning algorithm [Kesselheim Radke Tonnis Vocking'14]:

Ŋ

- At every step, solve the primal with appropriately scaled down capacities.
- Round the component corresponding to shopper *i*

adida

• If the match suggested by the primal is feasible, include it in solution.

.

20

Online Resource Allocation

Basic idea: use the first few elements as a sample to "learn" the instance.

Model:

- Shoppers arrive in uniformly random order
- Weights of all edges incident on a shopper are revealed at once
- Weights are adversarial

Primal program:

Primal-learning algorithm [Kesselheim Radke Tonnis Vocking'13]:

- Reject the first n/e requests.
- At subsequent requests *i* :
 - Find optimal matching over shoppers $\{1, ..., i\}$; Say *i* is matched to $j^*(i)$
 - If $j^*(i)$ is available, match *i* to it.

Analysis in two parts:

Part 1: For any *i*, the expected weight of $(i, j^*(i))$ is at least OPT/*n*. Part 2: The probability that $j^*(i)$ is blocked is small: The probability that $j^*(i)$ is matched to i' < i is at most 1/i'. Net "unblocking" probability $\ge \prod_{i'=\frac{n}{2}}^{i-1} \left(1 - \frac{1}{i'}\right) \approx \frac{\frac{n}{e}}{\frac{1}{e}} \ge \frac{1}{e}$ \Rightarrow total contribution of $\frac{1}{e} \left(1 - \frac{1}{e}\right)$ OPT

rn" the instance.

 $\max \sum_{i,j} x_{i,j} W_{i,j} \quad \text{subject to:}$ $\sum_{j} x_{i,j} \le 1 \quad \text{for all shoppers } i$ $\sum_{i} x_{i,j} \le 1 \quad \text{for all items } j$ $x_{i,j} \ge 0 \quad \text{for all } i \text{ and } j$

A recap of techniques

Secretary Problem:

- Elements arrive in uniformly random order
- Weights are adversarial
- Explore and exploit
- Learning duals
- Learning the primal

Prophet Inequality:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$
 - Contention Resolution Schemes
- Combinatorial approaches: balanced prices
- Online resource allocation: balanced prices; dual prices

Some extensions

Secretary Problem:

- Elements arrive in uniformly random order
- Weights are adversarial

Many possible variants:

- I.i.d. weights [Correa Foncea Hoeksma Ossterwijk Vredeveld'17]
- Correlated weight distributions [Chawla Malec Sivan'15, Immorlica Singla Waggoner'20]
- Unknown distributions but with sample access [Azar Kleinberg Weinberg'14, Correa Dutting Fischer Schewior'19, Rubinstein Wang Weinberg'20]
- Best/constrained order prophet inequality [Chawla Hartline Malec Sivan'10, Agrawal Sethuraman Zhang'20, Peng Tang'22, Arsenis Drosis Kleinberg'21]
- Non-uniform distribution or corruption over orderings [Kesselheim Kleinberg Niazadeh'15, Bradac Gupta Singla Zuzic'20]
- Prophet secretary: known weight distributions AND random order of arrival [Esfandiari Hajiaghayi Liaghat Monemizadeh'15, Azar Chiplunkar Kaplan'18]
- Non-linear objectives [Feldman Zenklusen'15, Rubinstein Singla'17]
- Stochastic departures [Kessel Shameli Saberi Wajc'22]

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$

Some extensions

Q

Secretary Problem:

- Elements arrive in uniformly random order
- Weights are adversarial

Secretary/prophet models for other optimization problems:

- Bin packing [Kenyon'96]
- Online Steiner tree [Garg Gupta Leonardi Sankowski'08]
- Set cover; facility location [Grandoni Gupta Leonardi Miettinen Sankowski Singh'08]
- Online independent set [Gobel Hoefer Kesselheim Schleiden Vocking'14]
- k-server [Dehghani Ehsani Hajiaghayi Liaghat Seddighin'17]

Stochastic probing [Guha Munagala'07, Gupta Nagarajan'13, Gupta Nagarajan Singla'16, '17]

Price of information (Pandora's box) problems [Kleinberg Waggoner Weyl'16, Singla'18, Chawla Gergatsouli Teng Tzamos Zhang'20]

Prophet Inequality:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$

Secretary Problem:

- Elements arrive in uniformly random order
- Weights are adversarial

Prophet Inequality:

- Elements arrive in fixed but arbitrary order
- Weights are drawn from known distributions: $W_i \sim D_i$

Questions?