Mechanisms for resource allocation

SHUCHI CHAWLA

UNIVERSITY OF WISCONSIN-MADISON

Question: how to allocate scarce resources among multiple parties?

What if participants can lie and subvert rules?

What if participants arrive over time and future demand is unknown?

Objectives

SOCIAL WELFARE

=
$$\sum_{\text{participants } i}$$
 (value *i* gets from allocation)

REVENUE

=
$$\sum_{\text{participants } i}$$
 (payment made by i)

Competitive analysis: compare against hindsight optimal allocation Approximation: compare against revenue-optimal mechanism

Some applications

Two important settings:

- Scheduling jobs on a machine
 - Items \equiv "time slots"
 - − Buyers \equiv jobs

- Routing on a network
 - Items ≡ edges
 - Buyers \equiv paths

Assumptions

• Buyers' true values are unknown but their value distributions are known

Hindsight OPT = $E_{v_i \sim F_i} \left[\max_{(S_1, \dots, S_n)} \sum_i v_i(S_i) \right]$

Buyers arrive in an online fashion

Buyers can lie about their values and delay their arrival

We will think of truthful mechanisms as algorithms with structural constraints.

Value function of buyer *i*: $v_i \sim F_i$.

Adversarial order of arrival. When buyer *i* arrives, his identity and distribution are revealed.

Algorithm solicits values from buyers when they arrive. Buyers are rational: maximize (value from alloc - payment) A simple class of algorithms: posted pricing

- When each buyer arrives, algorithm offers each subset of items at a certain price.
- The buyer purchases $\underset{S}{\operatorname{argmax}}(v(S) p(S)).$

Special types of pricings:

Anonymous: prices don't depend on buyers' identity

Non-adaptive: prices don't evolve over time

Order-oblivious: prices don't depend on ordering of buyers

Item pricing: additive pricing function

Static pricing

Always truthful!

Some questions

- How well does simple posted pricing approximate welfare/revenue?
- Are there better (truthful) mechanisms?
- Are there better (non-truthful) algorithms?
- Can we optimize over the class of all pricings?

Maximizing social welfare

Key takeaway:

In many settings, static pricings are optimal-within-constant-factors across all online algorithms.

Outline

- Why do prices perform well?
 - A primal-dual view
 - Issues with dual prices
- Fix # 1: balanced prices
 - Warm up: single item prophet inequality.
 - Feldman-Gravin-Lucier generalization.
 - Extension to scheduling & routing
- Fix # 2: dual prices for large supply settings
 - Warm up: single item with copies.
 - Extension to scheduling
- Summary of results; open questions

Approach # 1: Prices as dual variables

• Complementary slackness implies $x_{i,S} > 0$ iff *S* is one of *i*'s favorite bundles under the pricing *p*.

How good are dual prices?

Problem 1: dual prices are usually too low.

$$\begin{array}{c} \hline \bullet & \bullet \\ \bullet & \bullet \\ \hline \bullet & \bullet \\ \bullet & \bullet \\ \hline \bullet & \bullet \\ \bullet$$

Problem 2: complementary slackness is not always useful due to the stochasticity of arrivals.

Buyer shifts preferences based on availability and has a new favorite set.

• Samuel-Cahn'84: There exists a static price *p* such that allocating item to the first buyer with value above *p* gets a competitive ratio of 2.

• Set p so that $\Pr[\exists i : v_i \ge p] = 1/2$.

The single item prophet inequality

• OPT =
$$E\left[\max_{i} v_{i}\right] \le E\left[\max_{i} (p + (v_{i} - p)^{+})\right] \le p + \sum_{i} E[(v_{i} - p)^{+}]$$

• ALG $\ge p\left[\Pr[\text{item is sold}\right] + \sum_{i} E[(v_{i} - p)^{+}]\left[\Pr[\text{item is offered to } i]\right] \ge 1/2$
 $\Rightarrow ALG \ge \frac{1}{2} OPT$
• Can also pick $p = \frac{1}{2} OPT$.
• Tight!
 $OPT = \epsilon \cdot \frac{1}{\epsilon} + (1 - \epsilon) \cdot 1 = 2 - \epsilon$
 $ALG \ge 1/2$
 $\Rightarrow Pr[\text{item is unsold at the end}]$
 $OPT = \epsilon \cdot \frac{1}{\epsilon} + (1 - \epsilon) \cdot 1 = 2 - \epsilon$
 $ALG \ge 1/2$

General (combinatorial) prophet inequalities

- Each buyer has a value $v_i \sim F_i$.
- Buyers arrive online; algorithm observes v_i ; makes accept/reject decisions.
- The algorithm faces a feasibility constraint \mathcal{F} . Must ensure: set of accepted agents $\in \mathcal{F}$.
- Constant factor competitive ratios in many settings: k-unit, matroids, knapsack, matching, ...
 [Chawla Hartline Malec Sivan'10, Alaei'11, Kleinberg Weinberg'12, Feldman Svensson Zenklusen'15, Dutting Kleinberg'15], ...
- Different from our setting:
 - We select the actual allocation, not just accept/reject decisions.
 - Want a simple pricing-based algorithm

Approach # 2: balanced prices (for unit-demand buyers) [Fe

[Feldman Gravin Lucier'15] [Kleinberg Weinberg'12]

- Contribution of item *j* to optimal SW = $\sum_i v_{i,j} x_{i,j}$.
- Set the price for item *j* to $p_j = 1/2 \sum_i v_{i,j} x_{i,j}$.
- The prices are not too low:

If item *j* gets sold, then seller's revenue from $j = p_j$

• The prices are not too high:

If item *j* does not get sold, then any buyer *i*'s utility $\geq v_{i,j} - p_j$.

 \Rightarrow Total utility "attributed to item j" $\geq \sum_{i} x_{i,j} (v_{i,j} - p_j) = p_j$.

• Social Welfare = Seller's revenue + buyers' utility

Approach # 2: balanced prices

[Feldman Gravin Lucier'15] [Dutting Feldman Kesselheim Lucier'17]

Type of value function	Competitive ratio	Lower bound
Unit-demand or additive	2	2
XOS (max over additive functions)	2	2
MPH-L	4 <i>L</i> -2	L

Limitations of balanced item prices

• Poor approximation when values have complementarities

 $v_2(\text{all } n \text{ items}) = \$(n-1)$

 $v_2(any other set) = \$0$

 $v_1(any single item) = \$1$

Any static item pricing must price every item at > 1 to exclude buyer 1 but then also excludes buyer 2.

OPT =
$$n - 1$$
; ALG = 1

Approach # 3: Balanced bundle prices

- Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles. Then leverage FGL's balanced pricing approach.
 Original fractional solution
- A fractional unit allocation is:
- **1.** A partition of items into bundles
- 2. A fractional matching from buyers to bundles

Fractional unit allocation

 $\mathcal{B} \text{ is a partition of items into bundles} \\ \sum_{S \in \mathcal{B}} y_{i,S} \leq q_i \quad \text{for all buyers } i \\ \sum_{S \in \mathcal{B}} y_{i,S} \leq 1 \quad \text{for all sets } S \in \mathcal{B} \\ x_{i,S} \geq 0 \qquad \text{for all } i \text{ and } S$

Approach # 3: Balanced bundle prices

- Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles.
 Then leverage FGL's balanced pricing approach.
 Original fractional solution
- A fractional unit allocation is:
- **1.** A partition of items into bundles
- 2. A fractional matching from buyers to bundles

- Key lemma: show that the new value $(\sum_{i,S} y_{i,S} v_{i,S})$ is not much smaller than the original LP value $(\sum_{i,S} x_{i,S} v_{i,S})$.
- Can do for intervals and paths on trees while losing logarithmic factors.

Approaches #2 & #3: Balanced item and bundle prices

Value functions	Competitive ratio	Lower bound	Technique
Additive or unit-demand	2 [FGL'15]	2	Balanced item prices
XOS	2 [FGL'15]	2	Balanced item prices
MPH-L	4 <i>L</i> -2 [DFKL'17]	L	Balanced item prices
Interval scheduling over intervals of size $\leq L$	$O\left(\frac{\log L}{\log \log L}\right) [CMT'19]$	$\Omega\left(\frac{\log L}{\log\log L}\right)$	Balanced bundle prices
Routing on trees with values $\in [1, H]$	O(log H) [CMT'19]	$\Omega\left(\frac{\log H}{\log\log H}\right)$	Balanced bundle prices

Approaches #2 & #3: Balanced item and bundle prices

Value functions	Competitive ratio	Lower bound	Technique
Additive or unit-demand	2 [FGL'15]	2	Balanced item prices
XOS	2 [FGL'15]	2	Balanced item prices
MPH-L	4 <i>L</i> -2 [DFKL'17]	L	Balanced item prices
Interval scheduling over intervals of size $\leq L$	$O\left(\frac{\log L}{\log\log L}\right) [CMT'19]$	$\Omega\left(\frac{\log L}{\log\log L}\right)$	Balanced bundle prices
Routing on trees with values $\in [1, H]$	O(log H) [CMT'19]	$\Omega\left(\frac{\log H}{\log\log H}\right)$	Balanced bundle prices
Interval scheduling with capacities <i>k</i>	$O\left(\frac{\log L}{k\log\log L}\right) [CMT'19]$	$\Omega\left(\frac{\log L}{k(\log\log L - \log k)}\right)$	Balanced bundle prices
Routing on trees with capacities <i>k</i>	$O\left(\frac{\log H}{k}\right)$ [CMT'19]	$\Omega\left(\frac{\log H}{k\log\log H}\right)$	Balanced bundle prices

Can we beat the 2 in large supply settings?

k-unit prophet inequality:

- Find price *p* such that $E[|\{i: v_i \ge p\}|] \approx k \sqrt{k \log k}$
- *p* is the dual price for the LP on the right
- w.h.p. item does not get sold out

$$\Rightarrow 1 - O\left(\sqrt{\frac{\log k}{k}}\right)$$
 competitive ratio.

• Tight! [Ghosh Kleinberg'16]

(for pricings; for mechanisms, can get $1 - O(1/\sqrt{k})$ [Alaei'11])

[Hajiaghayi Kleinberg Sandholm'07]

$$\max \sum_{i} x_{i} v_{i}$$

subject to:
$$x_{i} \leq q_{i} \text{ for all } i$$

$$\sum_{i} x_{i} \leq k - \sqrt{k \log k}$$

$$x_{i} \geq 0 \text{ for all } i$$

Approach # 4: Dual prices for large supply interval scheduling

Assumptions:

- Each job has a fixed length; value.
- Wants to get scheduled within a certain time window.
- Supply at any time *t* is at least *k*

 $v_{i,S}$: buyer *i*'s value for set *S* q_i : buyer *i*'s probability of arrival $x_{i,S}$: buyer *i*'s prob. of receiving set *S*

DUAL

$$\min \sum_{j} p_{j} (1 - \epsilon) k_{j} + \sum_{i} u_{i} q_{i}$$
subject to:

$$\sum_{j \in S} p_{j} + u_{i} \ge v_{i,S} \text{ for all } i, S$$

$$u_{i}, p_{j} \ge 0 \text{ for all } i, j$$

PRIMAL

Approach # 4: Dual prices for large supply interval scheduling

Want $X_t < B_t$ w.h.p.; Problem: bad events are correlated across *t*.

Dual prices: bounding the failure probabilities on a forwarding graph

The forwarding graph

Consider all possible forwarding subtrees of G. The load in picture 2 can be bounded by the load in one of these subtrees.

Dual prices: combining subtrees into one tree

Tree networks permit an inductive analysis. Failure probabilities depend on the in-degrees of nodes.

Approach # 4: Dual prices for large supply interval scheduling

[Chawla Devanur Holroyd Karlin Martin Sivan '17]

There exist a price schedule such that if jobs are unit length^(*), and,

$$k_j \ge \Omega\left(\frac{1}{\epsilon^2}\log\frac{1}{\epsilon}\right)$$
 for all j

Then the expected social welfare achieved is at least $(1 - \epsilon)$ times the Hindsight-OPT.

(*) Need $k_j \ge \Omega\left(\frac{L^6}{\epsilon^3}\log\frac{1}{\epsilon}\right)$ when jobs are of length up to L.

Approaches #2, #3, & #4: Balanced prices and dual prices

Value functions	Competitive ratio	Lower bound	Technique
XOS	2 [FGL'15]	2	Balanced item prices
MPH-L	4 <i>L</i> -2 [DFKL'17]	L	Balanced item prices
Interval scheduling over intervals of size $\leq L$	$O(\log L / \log \log L)$ [CMT'19]	$\Omega(\log L / \log \log L)$	Balanced bundle prices
Routing on trees with values $\in [1, H]$	O(log H) [CMT'19]	$\Omega(\log H / \log \log H)$	Balanced bundle prices
Interval scheduling with capacities <i>k</i>	$O(\log L/k \log \log L)$ [CMT'19]	$\Omega(\log L/k \ (\log \log L - \log k))$	Balanced bundle prices
Routing on trees with capacities <i>k</i>	$O(\log H / k)$ [CMT'19]	$\Omega(\log H/k \log \log H)$	Balanced bundle prices
<i>k</i> -unit	$1 - O(\sqrt{\log k / k})$ [HKS'07]		Dual prices
Interval scheduling special case; capacity <i>k</i>	$1 - O(\text{poly}(L \log k/k))$ [CDH+'17]		Dual prices

Some open directions

- Beat the factor of 2 for unit-demand with large supply?
- Beat the factor of 2 for subadditive values with large supply?

- Routing on general graphs?
- General valuations on small sets?
 - LP is too weak
- Why do static prices perform so well?

Revenue maximization: a different story

Key takeaways:

Necessarily need non-anonymous mechanisms Need to price random allocations Even single-buyer setting is challenging

Revenue maximization: a different story

Simplest set-up: one buyer; two items

Optimal mechanism can be complicated:

- Offers random allocations, a.k.a. lotteries [Thannasoulis'05]
- Can have infinitely many options!

Every near-optimal solution may be complicated

No finite menu can provide a finite approximation!

[Briest C. Kleinberg Weinberg'10, Hart Nisan'13]

[Hart Nisan'13]

 $v \sim F$

Revenue maximization: take two

[Chawla Teng Tzamos '19]

Extra constraint on the mechanism:

cannot sell a bundle at a price higher than the sum of its constituents.

"Buy Many Constraint"

Theorem: Item-pricing is always an $O(\log n)$ -approximation to the optimal buy-many mechanism.

(no matter the value distribution)

n = number of items

Some open directions

- When can pricing functions be approximated in revenue by simple pricing functions?
 - Any mechanism is a pricing function: f: random allocation \rightarrow price.
 - Extend to $f(v) = f(\operatorname{argmax}_{S}(v(S) f(S)))$.
 - Want to find simple g such that $E_v[g(v)] \ge (\text{some fraction}).E_v[f(v)]$
- Can we efficiently find an approximately revenue-optimal item pricing?

Pricing as a parameterized greedy algorithm

- Can prices be used to simplify algorithm design in non-strategic settings?
- Optimal prices depend on the instance but can potentially be learned!

Acknowledgements

Buy-many mechanisms are not much better than item pricing. C., Teng, and Tzamos. EC'19.

Posted pricing for online resource allocation: intervals and paths. C., Miller, and Teng. SODA'19.

Stability of service under time-of-use pricing. C., Devanur, Holroyd, Karlin, Martin, and Sivan. STOC'17.

Truth and regret in online scheduling. C., Devanur, Kulkarni, and Niazadeh. EC'17.

Thanks for listening!

