Mechanisms for resource allocation

SHUCHI CHAWLA

UNIVERSITY OF WISCONSIN-MADISON

Question: how to allocate scarce resources among multiple parties?

What if participants can lie and subvert rules?

What if participants arrive over time and future demand is unknown?

Objectives

SOCIAL WELFARE

$$
= \sum_{\text{participants }i} \text{(value } i \text{ gets from allocation)}
$$

REVENUE

$$
= \sum_{\text{participants } i} \text{(payment made by } i\text{)}
$$

Competitive analysis: compare against hindsight optimal allocation Approximation: compare against revenue-optimal mechanism

Some applications

Two important settings:

- Scheduling jobs on a machine
	- $−$ Items \equiv "time slots"
	- $-$ Buyers \equiv jobs

- Routing on a network
	- $−$ Items \equiv edges
	- $−$ Buyers \equiv paths

Assumptions

• Buyers' true values are unknown but their value distributions are known

Hindsight OPT = $E_{v_i \sim F_i}$ $\left[\max_{(S_1, ..., S_n)} \sum_i v_i(S_i)\right]$

• Buyers arrive in an online fashion

• Buyers can lie about their values and delay their arrival

> We will think of truthful mechanisms as algorithms with structural constraints.

Value function of buyer $i\colon v_i\!\sim F_i.$

Adversarial order of arrival. When buyer i arrives, his identity and distribution are revealed.

Algorithm solicits values from buyers when they arrive. Buyers are rational: maximize (value from alloc - payment)

A simple class of algorithms: posted pricing

- When each buyer arrives, algorithm offers each subset of items at a certain price.
- The buyer purchases argmax $(v(S) p(S))$. \mathcal{S}

Always truthful!

Special types of pricings:

Anonymous: prices don't depend on buyers' identity

Non-adaptive: prices don't evolve over time

Order-oblivious: prices don't depend on ordering of buyers

Item pricing: additive pricing function

Static pricing

Some questions

- How well does simple posted pricing approximate welfare/revenue?
- Are there better (truthful) mechanisms?
- Are there better (non-truthful) algorithms?
- Can we optimize over the class of all pricings?

Maximizing social welfare

Key takeaway:

In many settings, static pricings are optimal-within-constant-factors across all online algorithms.

Outline

- Why do prices perform well?
	- A primal-dual view
	- Issues with dual prices
- Fix # 1: balanced prices
	- Warm up: single item prophet inequality.
	- ⎼ Feldman-Gravin-Lucier generalization.
	- Extension to scheduling & routing
- Fix # 2: dual prices for large supply settings
	- Warm up: single item with copies.
	- Extension to scheduling
- Summary of results; open questions

Approach # 1: Prices as dual variables

• Complementary slackness implies $x_{i,s} > 0$ iff S is one of *i*'s favorite bundles under the pricing p.

How good are dual prices?

Problem 1: dual prices are usually too low.

$$
LP = \epsilon.\frac{1}{\epsilon^2} + (1 - \epsilon).1 \approx 1/\epsilon \qquad \text{Dual price = 1}
$$
\nvalue = 1\n
$$
OPT = \epsilon.\frac{1}{\epsilon^2} + (1 - \epsilon)^2.1 \approx 1/\epsilon \qquad \text{ALG} = (1 - \epsilon).1 + \epsilon^2.1/\epsilon^2 < 2
$$
\nProb. Arrival = 1 - \epsilon \qquad Prob. Arrival = \epsilon

Problem 2: complementary slackness is not always useful due to the stochasticity of arrivals.

Buyer shifts preferences based on availability and has a new favorite set.

- Samuel-Cahn'84: There exists a static price p such that allocating item to the first buyer with value above p gets a competitive ratio of 2.
- Set *p* so that $Pr[\exists i : v_i \ge p] = 1/2$.

• OPT = E
$$
\left[\max_i v_i\right] \leq E \left[\max(p + (v_i - p)^+) \right] \leq p + \sum_i E[(v_i - p)^+] \right]
$$

\n• ALG $\geq p$ (Pr[item is sold]) + $\sum_i E[(v_i - p)^+]$ (Pr[item is offered to *i*]) $\geq 1/2$
\n= 1/2
\nObservations:
\n• Can also pick $p = \frac{1}{2}$ OPT.
\n• Tight!
\n• Tight!
\n $\left[\max(p + (v_i - p)^+) \right]$ (Pr[item is offered to *i*]) $\geq 1/2$
\n= 1- Pr[item is unsold at the end]
\n= 1- Pr[item is sold]
\n= 1/ε
\

General (combinatorial) prophet inequalities

- Each buyer has a value $v_i \sim F_i$.
- Buyers arrive online; algorithm observes v_i ; makes accept/reject decisions.
- The algorithm faces a feasibility constraint $\mathcal F$. Must ensure: set of accepted agents $\in \mathcal F$.
- Constant factor competitive ratios in many settings: *k*-unit, matroids, knapsack, matching, … [Chawla Hartline Malec Sivan'10, Alaei'11, Kleinberg Weinberg'12, Feldman Svensson Zenklusen'15, Dutting Kleinberg'15], …
- Different from our setting:
	- ⎼ We select the actual allocation, not just accept/reject decisions.
	- ⎼ Want a simple pricing-based algorithm

Approach # 2: balanced prices (for unit-demand buyers)

[Feldman Gravin Lucier'15] [Kleinberg Weinberg'12]

- Contribution of item *j* to optimal SW = $\sum_i \nu_{i,j} x_{i,j}$.
- Set the price for item j to $p_j = \frac{1}{2} \sum_i v_{i,j} x_{i,j}$.
- The prices are not too low:

If item *j* gets sold, then seller's revenue from $j = p_j$

• The prices are not too high:

If item *j* does not get sold, then any buyer *i*'s utility $\ge v_{i,j} - p_j$.

 \Rightarrow Total utility "attributed to item $j'' \geq \sum_i x_{i,j} (v_{i,j} - p_j) = p_j.$

• Social Welfare = Seller's revenue + buyers' utility

Approach # 2: balanced prices

[Feldman Gravin Lucier'15] [Dutting Feldman Kesselheim Lucier'17]

Limitations of balanced item prices

• Poor approximation when values have complementarities

 v_2 (any other set) = \$0

but then also excludes buyer 2.

 $OPT = n - 1$; ALG = 1

Any static item pricing must price every item at > 1 to exclude buyer 1

 v_1 (any single item) = \$1 v_2 (all *n* items) = \$(*n* - 1)

Approach # 3: Balanced bundle prices

- Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles. Then leverage FGL's balanced pricing approach. Original fractional solution
- A fractional unit allocation is:
- 1. A partition of items into bundles
- 2. A fractional matching from buyers to bundles

Fractional unit allocation

B is a partition of items into bundles $\sum y_{i,S} \leq q_i$ for all buyers i $s \in \mathcal{B}$ $\sum y_{i,S} \leq 1$ for all sets $S \in \mathcal{B}$ i $x_i \leq 0$ for all *i* and *S*

Approach # 3: Balanced bundle prices

- Key idea: partition items into bundles and pretend each buyer is unit-demand over the bundles. Then leverage FGL's balanced pricing approach. Original fractional solution
- A fractional unit allocation is:
- 1. A partition of items into bundles
- 2. A fractional matching from buyers to bundles

- Key lemma: show that the new value $(\sum_{i,s} y_{i,s} v_{i,s})$ is not much smaller than the original LP value $(\sum_{i,s} x_{i,s} v_{i,s})$.
- Can do for intervals and paths on trees while losing logarithmic factors.

Approaches #2 & #3: Balanced item and bundle prices

Approaches #2 & #3: Balanced item and bundle prices

Can we beat the 2 in large supply settings?

 k -unit prophet inequality:

- Find price p such that $E[|\{i : v_i \ge p\}|] \approx k \sqrt{k \log k}$
- p is the dual price for the LP on the right
- w.h.p. item does not get sold out

$$
\Rightarrow 1 - O\left(\sqrt{\frac{\log k}{k}}\right)
$$
 competitive ratio.

• Tight! [Ghosh Kleinberg'16]

(for pricings; for mechanisms, can get $1 - O(1/\sqrt{k})$ [Alaei'11])

[Hajiaghayi Kleinberg Sandholm'07]

$$
\max \sum_{i} x_{i} v_{i}
$$

subject to:

$$
x_{i} \leq q_{i} \text{ for all } i
$$

$$
\sum_{i} x_{i} \leq k - \sqrt{k \log k}
$$

$$
x_{i} \geq 0 \text{ for all } i
$$

Approach # 4: Dual prices for large supply interval scheduling

Assumptions:

- Each job has a fixed length; value.
- Wants to get scheduled within a certain time window.
- Supply at any time t is at least k

 v_i _s: buyer *i*'s value for set S q_i : buyer i 's probability of arrival

$$
\begin{array}{c}\n\text{DUAL} \\
\text{min}\n\end{array}
$$

$$
\min \sum_{j} p_j (1 - \epsilon) k_j + \sum_{i} u_i q_i
$$
\nsubject to:\n
$$
\sum_{j \in S} p_j + u_i \ge v_{i,S} \quad \text{for all } i, S
$$
\n
$$
u_i, p_j \ge 0 \qquad \text{for all } i, j
$$

Approach # 4: Dual prices for large supply interval scheduling

Want X_t < B_t w.h.p.; Problem: bad events are correlated across t.

Dual prices: bounding the failure probabilities on a forwarding graph

Consider all possible forwarding subtrees of G. The load in picture 2 can be bounded by the load in one of these subtrees. Dual prices: combining subtrees into one tree

Tree networks permit an inductive analysis. Failure probabilities depend on the in-degrees of nodes.

Approach # 4: Dual prices for large supply interval scheduling

[Chawla Devanur Holroyd Karlin Martin Sivan '17]

There exist a price schedule such that if jobs are unit length $(*)$, and,

$$
k_j \ge \Omega\left(\frac{1}{\epsilon^2} \log \frac{1}{\epsilon}\right) \text{ for all } j
$$

Then the expected social welfare achieved is at least $(1 - \epsilon)$ times the Hindsight-OPT.

(*) Need $k_j \ge \Omega \left(\frac{L^6}{\epsilon^3}\right)$ $rac{L^6}{\epsilon^3} \log \frac{1}{\epsilon}$ ϵ when jobs are of length up to L .

Approaches #2, #3, & #4: Balanced prices and dual prices

Some open directions

- Beat the factor of 2 for unit-demand with large supply?
- Beat the factor of 2 for subadditive values with large supply?

- Routing on general graphs?
- General valuations on small sets?
	- $-LP$ is too weak
- Why do static prices perform so well?

Revenue maximization: a different story

Key takeaways:

Necessarily need non-anonymous mechanisms Need to price random allocations Even single-buyer setting is challenging

Revenue maximization: a different story

Simplest set-up: one buyer; two items

Optimal mechanism can be complicated:

- Offers random allocations, a.k.a. lotteries [Thannasoulis'05]
- Can have infinitely many options! [Hart Nisan'13]

Every near-optimal solution may be complicated

• No finite menu can provide a finite approximation!

[Briest C. Kleinberg Weinberg'10, Hart Nisan'13]

 \equiv \$2

 \equiv \$1

Revenue maximization: take two

[Chawla Teng Tzamos '19]

Extra constraint on the mechanism:

cannot sell a bundle at a price higher than the sum of its constituents.

"Buy Many Constraint"

Theorem: Item-pricing is always an $O(\log n)$ -approximation to the optimal buy-many mechanism.

(no matter the value distribution)

 $n =$ number of items

Some open directions

- When can pricing functions be approximated in revenue by simple pricing functions?
	- $−$ Any mechanism is a pricing function: f : random allocation $→$ price.
	- Extend to $f(v) = f(\argmax_S(v(S) f(S)))$.
	- − Want to find simple g such that $E_{\nu}[g(v)] \geq$ (some fraction). $E_{\nu}[f(v)]$
- Can we efficiently find an approximately revenue-optimal item pricing?

Pricing as a parameterized greedy algorithm

- Can prices be used to simplify algorithm design in non-strategic settings?
- Optimal prices depend on the instance but can potentially be learned!

Acknowledgements

Buy-many mechanisms are not much better than item pricing. C., Teng, and Tzamos. EC'19.

Posted pricing for online resource allocation: intervals and paths. C., Miller, and Teng. SODA'19.

Stability of service under time-of-use pricing. C., Devanur, Holroyd, Karlin, Martin, and Sivan. STOC'17.

Truth and regret in online scheduling. C., Devanur, Kulkarni, and Niazadeh. EC'17.

Thanks for listening!

