Buy Many Mechanisms:

A new perspective on revenue-optimal mechanism design

JOINT WORK WITH: YIFENG TENG & CHRISTOS TZAMOS

Revenue maximization with a single buyer

Goal: maximize revenue $E_{v \sim D}[\operatorname{Rev}_M(v)]$

What does the optimal menu look like? Can we find it?

Single item setting, n = 1 [Myerson'81]:

- Single menu option; no lotteries - just a fixed price

But for n > 1:

- Lotteries can improve revenue
- Optimal mechanism has infinite number of lotteries
- Cannot hope to compute the optimal mechanism even in simple cases [Chen-Diakonikolas-Orfanou-Paparas-Sun-Yannakakis'15]

Goal: maximize revenue $E_{v \sim D}[\operatorname{Rev}_M(v)]$

[Thanassoulis'04]

[Hart-Nisan'13]

Can we get near-optimal revenue via a "simple" mechanism?

Item pricing : $p(S) = \sum_{i \in S} p_i$

The simplicity versus optimality tradeoff

Define:

 $OPT_{D} = \max_{menu \ M} E_{v \sim D} [Revenue of \ M \ from \ v]$ $SRev_{D} = \max_{item \ pricings \ p} E_{v \sim D} [Revenue of \ p \ from \ v]$ Selling Separately OPT_{D}

Approximation factor = $\max_{distribution D} \frac{O(1)_D}{SRev_D}$

or
$$\frac{OPT_D}{DRev_D}$$
 or $\frac{DRev_D}{SRev_D}$
where $DRev_D = \max_{determ. M} E_{v \sim D}[Rev. M \text{ from } v]$

We want the approximation factor to be as close to 1 as possible.

The simplicity versus optimality tradeoff

For a single item (n = 1), OPT = DRev = SRev [Myerson'81]

- For n > 1, OPT/SRev is small if:
 - The value function is "nice" (e.g. additive or unit-demand)

AND

- Values for different items are independent

Without those assumptions:

There exists an instance with a unit-demand buyer with n = 2 for which

 $OPT = \infty$ and SRev < 1

• There exists an instance with an additive buyer with n = 2 for which

 $OPT = \infty$ and $Rev(any finite menu) < \infty$ and SRev < 1

Is this the end of the story?

[C. Hartline Kleinberg'07], [C. Malec Sivan'10], [Li Yao'13], [Babaioff Immorlica Lucier Weinberg '14], [Rubinstein Weinberg'15],

[Briest C. Kleinberg Weinberg'10], [Hart Nisan'13]

•••

[Hart Nisan'13]

Optimal mechanisms can be "unreasonable"

Optimal mechanisms may charge super-additive prices.

Alternate approach: optimize over "reasonable" mechanisms

Optimal deterministic menu

Buy-many mechanisms

- In a buy-many strategy, a buyer can purchase any multi-set of menu options at the sum of their prices. The buyer obtains an independent draw from each option.
- A menu is "buy-many" if the random allocation resulting from any buy-many strategy is "dominated" by a single menu option.
- For deterministic pricings, buy-many \equiv subadditivity

Not buy-many

Not buy-many

Buy-many

Cheaper price; Bigger allocation

Buy-many mechanisms

In a buy-many strategy, a buyer can purchase any multi-set of menu options at the sum of their prices. The buyer obtains an independent draw from each option.

New goal: Study the properties and approximability of optimal buy-many mechanisms

Not buy-many

is Meny ... \$1 ... \$5 1/2()+ ... \$2

Not buy-many

Buy-many

Approximability and other properties of Buy-Many mechanisms Optimal buy-many mechanisms can be well approximated

[C. Teng Tzamos'19]

Theorem 1: For <u>any</u> value distribution D,

```
Buy-many optimal revenue<sub>D</sub> \leq 2 \log(2n) SRev<sub>D</sub>
```

For example, for n = 2 items, we can have $OPT_D = \infty$ and $SRev_D < \infty$

But we always have $SRev_D > 0.36$ Buy-many Rev_D

Can get better bounds in some special cases e.g. "ordered" items [C. Rezvan Teng Tzamos'21]

Previous work showed...

[Briest C. Kleinberg Weinberg'10]: For any distribution D over unit-demand valuations, Buy-many Rev $\leq O(\log n)$ SRev. [Babaioff Nisan Rubinstein'18]: \exists product distributions over additive values for which Buy-many Rev $\leq OPT$. Optimal buy-many mechanisms can be well approximated

[C. Teng Tzamos'19]

Theorem 1: For <u>any</u> value distribution *D*,

```
Buy-many optimal revenue<sub>D</sub> \leq 2 \log(2n) SRev<sub>D</sub>
```

Theorem 2: There exists a distribution *D* over additive valuations such that

Buy-many Rev $\geq \Omega(\log n)$ Revenue of any "succinct" mechanism

One that can be described using $2^{o(n^{1/4})}$ bits

What about a 99% approximation to optimal revenue?

Menu size complexity: min number of menu options needed to describe the mechanism [Hart-Nisan'13]

How many menu options do we need to get 99% of the optimal revenue?

- Infinitely many in general [Hart-Nisan'13]
- Finite (but exponential in n) only known in settings where the buyer has "nice" values over independent items
 [Babaioff et al.'17, Kothari et al.'19, ...]

Theorem 3: For <u>any</u> value distribution D and $\epsilon \in [0,1]$, there exists a menu M of finite size $f(n, \epsilon)$, such that,

 $\operatorname{Rev}_D(M) \ge (1 - \epsilon)\operatorname{Buy-many}\operatorname{Rev}_D$ [C. Teng Tzamos'20]

• Need $f(n,\epsilon) = (1/\epsilon)^{2^{O(n)}}$.

Tight: any smaller menu will only get an $O(\log n)$ fraction of the revenue.

Revenue monotonicity

Suppose that values of all buyers in the market increase (but non-uniformly). What happens to the optimal revenue?

- Single item: revenue increases
- General multi-item settings: revenue may decrease! [Hart-Reny'15]

What about buy-many mechanisms?

- Optimal revenue may decrease [C. Teng Tzamos'20]
 - ... but not by much.

Revenue continuity

Suppose that values of all buyers in the market change by small multiplicative amounts:

Every $v \sim D$ is perturbed to v' such that $\forall S \subseteq [n], v'(S) \in (1 \pm \epsilon)v(S)$.

What happens to the optimal revenue?

- Single item: revenue changes slightly, by $1 \pm O(\epsilon)$
- General multi-item settings: revenue can change significantly!
 - $OPT_D = \infty$ and $OPT_{D'} < \infty$ [Psomas et al.'19]

Theorem 4: For <u>any</u> value distribution D and <u>any</u> multiplicative perturbation D':

Buy-many $\operatorname{Rev}_{D'} \ge (1 - \operatorname{poly}(n, \epsilon))$ Buy-many Rev_D

The dependence on n is necessary

What makes Buy-Many mechanisms so well behaved?

What makes buy-many menus well-behaved?

Observation 1:

If x and x' are two "close enough" random allocations, they cannot be priced very differently.

 \Rightarrow mechanism can only price discriminate to a limited extent.

Observation 2:

If v and v' are two "close enough" valuations resulting in very different payments, the buyer's payment at these values is much lower than his utility

 \Rightarrow such buyers cannot contribute too much to optimal revenue

Observation 3:

Additive pricings point-wise *n*-approximate buy-many menus

A useful technical lemma

Point-wise approximation \Rightarrow approximation in revenue

Given any pricing functions f and g such that for all random allocations Λ , $\frac{1}{c}g(\Lambda) \leq f(\Lambda) \leq g(\Lambda)$. there exists a distribution over scaling factors $\alpha > 0$, such that for any value function v, $E_{\alpha}[\operatorname{Rev}_{v}(\alpha g)] \geq \frac{1}{2\log 2c}\operatorname{Rev}_{v}(f)$.

(Interpret any single buyer mechanism as a function that maps lotteries to prices.)

What makes buy-many menus well-behaved?

Observation 1:

If x and x' are two "close enough" random allocations, they cannot be priced very differently.

 \Rightarrow mechanism can only price discriminate to a limited extent.

Observation 2:

If v and v' are two "close enough" valuations resulting in very different payments, the buyer's payment at these values is much lower than his utility

 \Rightarrow such buyers cannot contribute too much to optimal revenue

Observation 3:

Additive pricings point-wise *n*-approximate buy-many menus

 $\Rightarrow O(\log n)$ approximation in revenue

Summary

Main idea: instead of restricting the market, simplify the optimization by introducing "reasonable" constraints

- Buy-many constraint is reasonable; frequently satisfied
- Buy-many mechanisms exhibit many nice properties
- Buy-many mechanisms can be well-approximated via item pricing
- Some interesting open directions:
 - Multiple buyers: what does the buy-many constraint mean in limited supply settings?
 - Exact computation? The buy-many constraint is not a linear constraint.

Thank you!