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Optimization + Strategic participants Mechanism Design

Allocation problem + Strategic agents Auction Design

+ computational considerations
+ robustness
+ learnability
+ simplicity
+ …
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This talk: 
       some examples of pricing as a solution to an auction design problem

Part 1: Social Welfare Maximization

Part 2: Revenue Maximization
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A generic stochastic resource allocation setting
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Many heterogenous 
items in limited supply

Buyers drawn randomly 
from population

Buyers assign values to 
subsets of items

Auction: 
(all reported prefs, market info) 
  → (allocation, payments) 

Buyers’ goal: obtain an allocation that 
maximizes their value – the price they pay.

Known population
of buyers

≡ $4

≡ $5
≡ $20



Part I: Social Welfare Maximization
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≡ $4

≡ $5
≡ $20

SOCIAL WELFARE, 

a.k.a., Economic Efficiency

= 
buyers 𝑖

(value 𝑖 gets from allocation)

Vickrey Auction: assigns the optimal allocation and charges “supporting” prices. Always truthful.



Part I: Online Stochastic Social Welfare Maximization
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≡ $4

≡ $5
≡ $20

SOCIAL WELFARE, 

a.k.a., Economic Efficiency

= 
buyers 𝑖

(value 𝑖 gets from allocation)

Challenge: determine the allocation and payment for 
each person before observing values of future arrivals.

Competitive Ratio =  max
distributions

Einstance~dist Hindsight−OPT(instance)

Einstance~dist[ALG(instance)]
 

Vickrey Auction: assigns the optimal allocation and charges “supporting” prices. Always truthful.



The single item case: prophet inequality

• Customers arrive in sequence and reveal their values

• At every step, the algorithm decides whether to 

allocate and stop; or to reject and move forward.

• Hindsight-OPT picks the maximum value
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$1 U[0,1] 10 w.p. 0.1
2 w.p. 1/3
1 w.p. 2/3

A threshold-based policy: allocate to the first value that crosses pre-determined threshold, a.k.a. price, t. 

Samuel-Cahn’84: Threshold-based policies achieve a CR of 2. 

• No other online algorithm can do better.

• Set price = 
1

2
Hindsight−OPT 

Robust to different arrival orders!



The single item case: prophet inequality

• Customers arrive in sequence and reveal their values

• At every step, the algorithm decides whether to 

allocate and stop; or to reject and move forward.

• Hindsight-OPT picks the maximum k values
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$1 U[0,1] 10 w.p. 0.1
2 w.p. 1/3
1 w.p. 2/3

A threshold-based policy: allocate to the first k values that cross pre-determined threshold, a.k.a. price. 

Samuel-Cahn’84: Threshold-based policies achieve a CR of 2. 

• No other online algorithm can do better.

• Set price = 
1

2
Hindsight−OPT

Robust to different arrival orders!

k copies

: Threshold-based policies achieve a CR of 1 − 𝜃 ൗlog 𝑘
𝑘 . 

Ghosh-Kleinberg’16: No other online algorithm can do better asymptotically.

Hajiaghayi-Kleinberg-Sandholm’07 
C.-Devanur-Lykouris’21

[C.-Devanur-Lykouris’21]



The “unit demand” case: balanced prices

• Customers arrive in sequence and reveal their values

• At every step, the algorithm decides what to allocate 

and at what price; or to reject and move forward.

• Hindsight-OPT picks the SW maximizing allocation.
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Item pricing: fix prices in advance; allow buyers to purchase their favorite item while supplies last.

Feldman-Gravin-Lucier’15: Item pricing achieves a CR of 2. 

• No other online algorithm can do better.

• Set pricei = 
1

2
(Contribution of i to Hindsight−OPT)

Robust to different arrival orders!

≡ $2

≡ $1

≡ U[0,5]

≡ $2 w. p. 0.1

⋯ $1

⋯ $1



Item prices arise as dual variables

Complementary slackness ⟹ LP allocates 𝑗 to 𝑖 iff 𝑗 is one of 𝑖’s favorite items under the pricing 𝑝.

max 

𝑖,𝑗

𝑥𝑖,𝑗𝑣𝑖,𝑗

subject to: 



𝑗

𝑥𝑖,𝑗 ≤ 𝑞𝑖 for all buyers 𝑖



𝑖

𝑥𝑖,𝑗 ≤ 𝑘𝑗 for all items 𝑗

 𝑥𝑖,𝑗 ≥ 0 for all 𝑖 and 𝑗

𝑣𝑖,𝑗: buyer 𝑖’s value for item 𝑗

𝑞𝑖: buyer 𝑖’s probability of arrival

𝑥𝑖,𝑗: fraction of item 𝑗 allocated to buyer 𝑖

kj: supply of item j

PRIMAL a.k.a. expected case LP

min 

𝑗

𝑘𝑗𝑝𝑗 + 

𝑖

𝑢𝑖𝑞𝑖

subject to: 
 𝑢𝑖 ≥ 𝑣𝑖,𝑗 − 𝑝𝑗 for all 𝑖, 𝑗

𝑢𝑖, 𝑝𝑗 ≥ 0 for all 𝑖, 𝑗

DUAL

In an optimal solution, 𝑢𝑖 = max
𝑗

𝑣𝑖,𝑗 − 𝑝𝑗

Demand ≤ Supply

No overprovisioning

Social Welfare
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Optimal value of PRIMAL ≥ Hindsight-OPT If 𝑝𝑗’s denote prices, then 𝑢𝑖’s are utilities!



The “unit demand” case: balanced prices

• Customers arrive in sequence and reveal their values

• At every step, the algorithm decides what to allocate 

and at what price; or to reject and move forward.

• Hindsight-OPT picks the SW maximizing allocation.
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Item pricing: fix prices in advance; allow buyers to purchase their favorite item while supplies last.

Feldman-Gravin-Lucier’15: Item pricing achieves a CR of 2. 

• No other online algorithm can do better.

• Set pricei = 
1

2
(Contribution of i to Hindsight−OPT)

≡ $2

≡ $1

≡ U[0,5]

≡ $2 w. p. 0.1

⋯ $1

⋯ $1

Use dual prices??



But dual prices don’t work well in stochastic settings

• Problem 1: dual prices are too low.

• Problem 2: as supply diminishes, the correspondence between LP-allocation and buyer 

preferences breaks down.

⎼ Every buyer purchases her favorite of the remaining items
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Value = 100
Arrival prob.=0.1

Value = 1
Arrival prob. =0.9

Dual price = 1; Alg allocates to the second buyer w.p. 0.01.

Coming up: two approaches to get around these problems…



Approach 1: balanced prices
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buyer’s value for item i
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LP-Value = shaded area

At “balanced” price p*:

Seller’s revenue = green area

Buyers’ utility = red area

FGL’s “balanced” price p*

Green area = red area ≥ ½ LP-Value

If item is sold out,
alg gets ≥ green area

If item is not sold out,
alg gets ≥ red area

[Feldman-Gravin-Lucier’15]

⟹ 2-approximation



𝑗

𝑘𝑗𝑝𝑗 + 

𝑖

𝑢𝑖𝑞𝑖



Approach 2: tracking buyer preferences
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FGL’s “balanced” 
price p*

Dual price with 1 − 𝜖  supply

1 − 𝜖 ∙ supply of item i

When supply is large enough, 
Pr  #arrivals of yellow buyers > supply ≤ 𝜖

Failure event

Challenge: a failure event at one item can 
cause a failure event at another item.

Question: how do failure events cascade?

[C. Devanur Holroyd Karlin Martin Sivan’17]



Approach 2: tracking buyer preferences
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When supply is large enough, 
Pr  #arrivals of yellow buyers > supply ≤ 𝜖

Failure event

Challenge: a failure event at one item can 
cause a failure event at another item.

Question: how do failure events cascade?

Failure events move along 

edges in the forwarding graph

𝑖1

𝑖2 𝑖3

𝑖4

Forwarding graph

Vertices ≡ items
Edges ≡ movement of buyers from

          one item to the next 

Theorem: If the graph has constant in-degree 
failure events cascade with low probability.

 ⇒ CR of 1 − O( Τlog 𝑘 𝑘)  

[C. Devanur Holroyd Karlin Martin Sivan’17]



Approach 2: tracking buyer preferences; application to interval scheduling

Items ≡ compute instances at different points of time; 

S
u
p
p

ly

Time

𝑞𝑗 , 𝑣𝑗
job’s time windowjob’s value

# instances 
available

job’s probability of arrival
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Item 1 Item 2 Item 3 …

Buyers ≡ jobs with requirements

Theorem: “time of use pricing” provides 

a 1 − 𝑂( Τlog 𝑘 𝑘) approximation

[C. Devanur Holroyd Karlin Martin Sivan’17]

Prices $5 $2 $8 $5 $1 $5



Part I: Online Stochastic Social Welfare Maximization – Summary 

Posted (static) pricing is the best online truthful SW-maximizing algorithm known for many settings:

• Single item [Samuel-Cahn’84]

• Unit demand [Feldman Gravin Lucier’15]

• Job scheduling [C. Devanur Holroyd Karlin Martin Sivan’17, C. Miller Teng’19]

• Fractionally subadditive values [FGL’15]

• Subadditive values [Dutting Kesselheim Lucier’20]

• MPH hierarchy of values [FGL’15, Dutting Feldman Kesselheim Lucier’17]

• Bandwidth allocation [C. Miller Teng’19]

17

Item pricing; or 
Bundle pricing



A generic stochastic resource allocation setting
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Many heterogenous 
items in limited supply

Buyer drawn randomly 
from population

Buyer assigns values to 
subsets of items

Auction: 
(all reported prefs, market info) 
  → (allocation, payment) 

Buyers’ goal: obtain an allocation that 
maximizes their value – the price they pay.

Known population
of buyers

≡ $4

≡ $5

Simplifying assumption:
single buyer



Part II: Revenue Maximization
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≡ $4

≡ $5

REVENUE* = 
buyers 𝑖

(payment made by 𝑖)

(*) Assumption: seller has a monopoly.

½ (           ) ⋯ $1.25

+ ½ ⋯ $1.5

⋯ $1

⋯ $1.5

⋯ $3

Prob. of allocation

The optimal mechanism can be quite complicated:

• Offers items packaged into bundles

• Offers random allocations, a.k.a. lotteries [Thannasoulis’05]

• Can have infinitely many options! [Hart Nisan’13]

• Can be computationally hard to find. [Chen et al.’15]



Part II: Revenue Maximization – Approximation 

• If the buyer is unit-demand and his values for different items are independent, then

          Item Pricing ≥ Τ1
4 OPT

• If the buyer has additive values and his values for different items are independent, 

   max(Item Pricing, Grand Bundle Pricing) ≥ Τ1
6 OPT

• If the buyer’s value function is subadditive over independent item values,  

    max(Item Pricing, Grand Bundle Pricing) ≥ Ω 1 OPT

      In the absence of independence, ∃ instances with OPT = ∞ and Revenue(any finite menu) < ∞ 

(even with just two items and unit-demand or additive values)
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Unit-demand: 𝑣 𝑆 = max𝑖∈𝑆𝑣𝑖

Additive: 𝑣 𝑆 = σ𝑖∈𝑆 𝑣𝑖

[C.-Hartline-Kleinberg’07] 
[C.-Malec-Sivan’10]

[Li-Yao’13] 
[Babaioff-Immorlica-Lucier-Weinberg ’14]

[Rubinstein-Weinberg’15] 

Best known approximations using any “simple” mechanisms

[Briest-C.-Kleinberg-Weinberg’10]
[Hart-Nisan’13]

Item pricing: 𝑝 𝑆 = σ𝑖∈𝑆 𝑝𝑖

Grand Bundle pricing: 𝑝 𝑆 = 𝑝([𝑛])



Part II: Revenue Maximization with a buy-many constraint
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≡ $4

≡ $5

½ (           ) ⋯ $1.25

+ ½ ⋯ $1.5

⋯ $1

⋯ $1.5

⋯ $3

[C.-Tzamos-Teng’19]

Buy-many constraint: cannot sell a bundle at a 
price higher than the sum of its constituents.

The optimal buy-many mechanism can be quite 

complicated:

• Offers random allocations, a.k.a. lotteries

• Can have infinitely many options! 

• Can be computationally hard to find. 



Part II: Revenue Maximization with a buy-many constraint – Approximation 

Theorem 1: For any value distribution,

  Buy-many OPT ≤ 2 log 2𝑛 ∙ Item Pricing

Theorem 2: There exists a distribution over additive valuations such that

 Buy-many OPT ≥ Ω log 𝑛  Revenue of any “succinct” mechanism
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One that can be described 

using 2𝑜(𝑛1/4) bits 

[C.-Tzamos-Teng’19]

n: #items



Theorem: Item Pricing is always a 2 log 2𝑛-approximation to the optimal buy-many mechanism.
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• Buy-many menus ≡ subadditive pricing function

• Item pricing ≡ additive pricing function

• Additive fns (g) pointwise 𝑛-approximate subadditive fns (f)

Lemma: Let 𝑓 and 𝑔 be any pricing functions such that 𝑔 pointwise 𝒄-approximates 𝑓.

                Then there exists a distribution over scaling factors 𝛼 > 0, such that for any buyer,

                The price paid by the buyer under 𝛼𝑔 ≥
𝟏

𝟐 𝒍𝒐𝒈 𝟐𝒄
 (The price paid by the buyer under 𝑓)

Pointwise approximation ⟹ Approximation in revenue

𝑔/c

𝛼𝑔

𝑓

𝑔

Additive functions are the succinct functions that 
best approximate an arbitrary subadditive function.
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𝑓

𝑔

𝑔/c
𝑆

Lemma: Let 𝑓 and 𝑔 be any pricing functions such that 𝑔 pointwise 𝒄-approximates 𝑓.

                Then there exists a distribution over scaling factors 𝛼 > 0, such that for any buyer,

                The price paid by the buyer under 𝛼𝑔 ≥
𝟏

𝟐 𝒍𝒐𝒈 𝟐𝒄
 (The price paid by the buyer under 𝑓)

𝑔 scaled by 
some power 
of 2

1

2
𝑓(𝑆) ≤ scaled-𝑔(𝑆) ≤ 𝑓(𝑆) 

𝑆′

Big gap!

𝑓(argmax𝑆 𝑣 𝑆 − 𝑓 𝑆 )

𝛼𝑔(argmax𝑆 𝑣 𝑆 − 𝛼𝑔 𝑆 )
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Lemma: Let 𝑓 and 𝑔 be any pricing functions such that 𝑔 pointwise 𝒄-approximates 𝑓.

                Then there exists a distribution over scaling factors 𝛼 > 0, such that for any buyer,

                The price paid by the buyer under 𝛼𝑔 ≥
𝟏

𝟐 𝒍𝒐𝒈 𝟐𝒄
 (The price paid by the buyer under 𝑓)

𝛼1

2𝑐
1
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Scaling factor 𝛼

Picking 𝛼 with density ∝ Τ1
𝛼  gives:

𝐸𝛼 rev 𝛼𝑔 =
utilmax − utilmin

log(2𝑐)

util 𝛼𝑔 = max
𝑆

{𝑣 𝑆 − 𝛼𝑔 𝑆 }

rev 𝛼𝑔 = 𝛼𝑔(𝑆)

utilmax ≈ rev(𝑓)

utilmin ≪ rev(𝑓)



Part II: Revenue Maximization with a buy-many constraint – Approximation 

Theorem 1: For any value distribution,

  Buy-many OPT ≤ 2 log 2𝑛 ∙ Item Pricing

Theorem 2: There exists a distribution over additive valuations such that

 Buy-many OPT ≥ Ω log 𝑛  Revenue of any “succinct” mechanism

Can get improved approximations for special valuation functions (e.g. “ordered” items)

Again, item pricing is the best “succinct” mechanism.
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[C.-Tzamos-Teng’19]

n: #items

[C. Rezvan Tzamos Teng’21]



Part II: Revenue Maximization – Summary 

• For single buyer settings, item pricing or grand bundle pricing is the best “simple” mechanism.

• For multiple buyer settings:

⎼ Sequential posted price mechanisms

⎼ Price individual items as well as charge an “entry fee”

⎼ Generally not anonymous

• For multiple buyer settings with buy-many constraint: nothing known yet!

27

[C. Hartline Malec Sivan’10, 
Yao’15, 

C. Miller’16, 
Cai-Zhao’17]



What else can posted prices do?

• Often the best simple/succinct mechanisms

• Suitable for online arrivals

• Robust – max-min optimal in some settings        [Carrol’17] 

• Learnable – polynomial pseudo-dimension         [Morgenstern-Roughgarden’16]

28

Open direction: computing (approximately) optimal prices



Thanks for your attention!

QUESTIONS?

29
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