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Revenue Maximization with Many Buyers

A seller with m items for sale n buyers drawn from some population
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Revenue Maximization with Many Buyers

A seller with m items for sale n buyers drawn from some population
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Value functions
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Buyer i’s objective: maximize utility := v;(S;) — p;

Seller’s objective: maximize revenue = )}, p;

Optimal mechanisms can be complicated -
even for just one buyer

* Sell random allocations a.k.a. lotteries
* Offer infinitely large menus

Buyers impose externalities on each other

* Isit better to allocate a limited supply item
to buyer 1 or buyer 27

* Allocation and pricing can be inscrutable
to buyers

Question: Is there a “simple” mechanism that approximates the optimal one?




The simplicity vs optimality tradeoff

* VCG with reserve pricing Revenue Gap? * random allocations a.k.a. lotteries

* Additive pricing, a.k.a. item pricing < >

* infinitely large menus
* Grand bundle pricing

* Two-part tariffs (i.e. subscription fees + item pricing)

Revenue Gap, a.k.a., approximation factor =

OPT (D)
ltem pricing : p(S MaXdistribution D [P—Rev(D)

OPT = maxmenu m Ev~p[Revenue of M from v]

IP-Rev = max{tem Pricing p Ev~plRevenue of p from v]




The simplicity vs optimality tradeoff

* VCG with reserve pricing Revenue Gap? * random allocations a.k.a. lotteries

* Additive pricing, a.k.a. item pricing < >

* infinitely large menus
* Grand bundle pricing

* Two-part tariffs (i.e. subscription fees + item pricing)

Good news: The gap is small (constant factor) in many settings

[Chawla Hartline Kleinberg'O7] [Hartline Roughgarden’09] [Chawla Malec QueStlon' What else can we 2zl about the

Sivan’10] [Li Yao'13] [Babaioff Immorlica Lucier Weinberg' 14] [Yao'14] gap in the absence of item independence?
[Rubinstein Weinberg’15] [Chawla Miller’16] [Cai Devanur Weinberg' 16] [Cai
Zhao’17] [Feng Hartline Li’19] [Kothari Mohan Schvartzman Singla Weinberg’19]

: Requires strong assumptions - independence of values across items - even for the single buyer setting

Briest C. Kleinberg Weinberg 10 : S : OPT
{Ha'rt Nisan,i'g)] e Heibere 20l There exist value distributions for which P—Rey — ®

OPT = maxmenu m Ev~plRevenue of M from v]
IP-Rev = maxjtem Pricing p E,.plRevenue of p from v]
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Part 1: Single-buyer settings

A new benchmark
Approximation and other properties




Towards a new benchmark: limiting the power of the seller

[C. Teng Tzamos’19]

Additive buyer

Buy-Many mechanisms: the buyer can purchase any multi-set of menu options at
the sum of their prices. The buyer obtains an independent draw from each option.

A menu is “buy-many” if the random allocation resulting from any buy-many
strategy is “dominated” by a single menu option.

Cheaper price; Bigger allocation




Towards a new benchmark: limiting the power of the seller
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Optimal buy-many mechanisms can be well approximated

[Briest C. Kleinberg Weinberg’ 10]
Theorem 1: For any value distribution D, [C. Teng Tzamos'19]

BuyManyRev, < 2 log(2n) IP—Revj

For example, for n = 2 items, we can have OPTp = oo and [IP—Revp <

But we always have IP—Revp > 0.36 BuyManyRevy,

Item pricing: p(S) = Xiesbi
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Optimal buy-many mechanisms can be well approximated

[Briest C. Kleinberg Weinberg’ 10]
Theorem 1: For any value distribution D, [C. Teng Tzamos'19]

BuyManyRevp < 2 log(2n) IP—Revp

Theorem 2: There exists a distribution D over additive valuations such that

BuyManyRev > Q(logn) Revenue of any “succinct” mechanism

One that can be described
OPT using 2°™*" pits
*

0 Item pricing: p(S) = Xiesbi

v
BuyManyRev o0
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O(logn)
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Better approximations for structured unit-demand value functions

[C. Rezvan Teng Tzamos’22]

m FedEx setting: items are ordered and each buyer desires a minimum quality level

i.e. for buyer of type (v,i), v, = v, = =v; =vand vy iy = =1, = 0.

[P—Rev = BuyManyRev

m Ordered values: v, = v, = --- = v, for all buyers

i.e. item 1 is better than item 2, which is better than item 3, and so on.

[P—Rev = 0(1) BuyManyRev

m k sets of ordered items (i.e. partial order of width k)

I[P—Rev = 0(log k) BuyManyRev




What about a 99% approximation to optimal revenue?

Menu size complexity: min number of menu options needed to describe the mechanism [Hart-Nisan'13]

How many menu options do we need to get 99% of the optimal revenue?
- Infinitely many in general [Hart-Nisan'13]

- Finite (but exponential in n) only known in settings where the buyer has “nice” values over independent items
[Babaioff et al.”17, Kothari et al.’19, ...]

Theorem 3: For any value distribution D and € € [0,1], there exists a menu M of finite size f(n, €),

such that, [C. Teng Tzamos'20]

Revp(M) = (1 — €)BuyManyRevp,

m  Need f(n,e) = (1/)2°™.

m Tight: any smaller menu will only get an O (log n) fraction of the revenue.



Revenue monotonicity

Suppose that values of all buyers in the market increase (but non-uniformly).

What happens to the optimal revenue?

m Single item: revenue increases

m General multi-item settings: revenue may decrease! [Hart-Reny’15]

What about buy-many mechanisms?
m Optimal revenue may decrease [C. Teng Tzamos'20]

... but not by much.




Revenue continuity

Suppose that values of all buyers in the market change by small multiplicative amounts:
Every v~D is perturbed to v’ such that VS € [n],v'(S) € (1 £ €)v(S).

What happens to the optimal revenue?

m Single item: revenue changes slightly, by 1 + 0(¢€)

m  General multi-item settings: revenue can change significantly!
-  OPTp = w0 and OPT,r < [Psomas et al.”19]

Theorem 4: For any value distribution D and any multiplicative perturbation D':

BuyManyRev, > (1 — poly(n, €))BuyManyRev,

The dependence on n
IS necessary




What makes buy-many menus well-behaved?

Observation 1:
m If x and x' are two “close enough” random allocations, they cannot be priced very differently.

= mechanism can only price discriminate to a limited extent.

Observation 2:

m If vand v are two “close enough” valuations resulting in similar allocations but very different payments,
either a slight perturbation of prices removes this price discrimination, or such buyers cannot contribute
too much to optimal revenue

Observation 3:

m Additive pricings point-wise n-approximate buy-many menus (a.k.a. subadditive pricings)

( '

Lemma: Let p and g be any pricing functions such that g pointwise c-approximates p.

Then there exists a distribution over scaling factors « > 0, such that for any buyer,
1
2log 2c

(The price paid by the buyer under «g) = (The price paid by the buyer under p)




It’s just a benchmark...

m We don’t know how to compute an optimal buy-many menu

m We don’'t know how a buyer would find the optimal buy-many strategy given a menu.

16



Part 2: Multi-buyer settings

Extending the benchmark
Approximation

17



An attempt to extend the benchmark

m  Single-buyer definition: the buyer can purchase any multi-set of menu options at the sum of their prices.
l.e., buyer can participate in the mechanism multiple times.

m  Multi-buyer definition: allow each buyer to participate in the mechanism many times?

W.p. ¥2, value = $6
w.p. %2, value = $D— 5,

©]
|

Todays Men,,
@D 53
@ Vo) - 31

Not buy-many

Day 1:
ltem offered to buyer 1 for $3

—

Day 2:
ltem offered to buyer 2 for $2
Buyer purchases with prob. ¥2

Day 3:
If item still available,
offered to buyer 1 for $1

|

OOO
‘@ W.p. ¥2, value = $2
w.p. %2, value = $0
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Two facets of the buy-many constraint

e I Ve N\
As a strengthening of buyers’ power As a weakening of the seller’s power
m Buyer can interact with mechanism multiple m Single interaction between buyer and seller,
times but,
m Unlimited supply = static menu across m  Super-additive pricing is simply disallowed in
interactions buyer-seller interaction
- J
m Limited supply = seller can distinguish
between and discriminate across different We will use this as the basis of our new benchmark
\_ interactions '\ Yy,

Offers no benefit over original OPT

Not the same in multiple buyer settings!

19




Buy-many mechanisms for multiple buyers: Take 1

1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu

20



Buy-many mechanisms for multiple buyers: Take 2

1.
2.

Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu

Seller runs a direct mechanism; “ex-post” pricing offered to each buyer is buy-many

{(S1,p1)} over possible choices
of v, form a buy-many menu.

{(S2,p2)} over possible choices
of v, form a buy-many menu.

21



Buy-many mechanisms for multiple buyers: Take 3

1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu

2. Seller runs a direct mechanism; “ex-post” pricing offered to each buyer is buy-many

-many

®

3. Seller runs a direct mechanism; “ex-ante” pricing offered to each buyeris

Ey,[M;] forms a buy-many menu.

‘® E,, [M,] forms a buy-many menu.

22




Buy-many mechanisms for multiple buyers: Take 3, ...

Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu
Seller runs a direct mechanism; “ex-post” pricing offered to each buyer is buy-many

Seller runs a direct mechanism; “ex-ante” pricing offered to each buyer is buy-many

W hdh e

Which definition should we use???

23



The Buy-Many benchmark for many buyers (c. rezvan Teng Tzamos 23

m Many ways to decompose a multi-buyer mechanism into its single buyer constituents

m EXx Ante relaxation - a convenient upper bound that captures many of these extensions. [Alaei’l1]

Relax the ex post supply constraint to an ex ante supply constraint:
In expectation over

“Fer-every-instantiation-of v;~D;, each item is allocated to at most one buyer”

m LetM,,M,,..bebuy-many mechanisms such that (%1, X3, ..., X,) is ex ante feasible if },; x;; < 1 forall j

2.; Pr[M; sells item j to buyer i] < 1 for all items j.

m ExAnte-BuyMany-OPT is the most revenue that can be obtained by such a tuple.

24




The Buy-Many benchmark for many buyers (c. rezvan Teng Tzamos 23

m Many ways to decompose a multi-buyer mechanism into its single buyer constituents

m EXx Ante relaxation - a convenient upper bound that captures many of these extensions. [Alaei’l1]

Relax the ex post supply constraint to an ex ante supply constraint:

In expectation over

“Fer-every-instantiation-of v;~D;, each item is allocated to at most one buyer”

Mechanism M satisfies ex ante supply constraint y € R™

with respect to value distribution D if:

for all items J, Plz)[buyer with value v buys j in M] < y;.
v~

BMRev(D, y) := the most revenue achievable by a buy-
many mechanism that satisfies y.

(%1, X3, ..., X,) is ex ante feasible if },; x;; < 1 forall j

ExAnte-BM-OPT= maXgy ante feasible x | 2o; BMRev(D;, x;) |

ExAnte-IP-OPT= maxgy ante feasible x | 2; lt€mMPricingRev(D;, x;) |

For al Forany distributions D, ./, D,; overm items, ExAnte-BM-OPT < O(logm) - ExAnte:IP-QPT (D, y)

Tight! [C. Rezvan Teng Tzamos'23]

25




Ex Ante versus Ex Post feasible mechanisms

w.p. ¥2: only = for $1

@ w.p. ¥2: only @ for $3

O w.p. o1« for $0; @ for $0; Pair for $5

‘® w.p. ¥2: $0 for all allocations

Ex Ante optimal item pricing:
» To Alice, offer p; = (1,3). Allocation probabilities are (%2, %2).
« To Bob, offer p, = (3,2). Allocation probabilities are (Y2, ¥2).

Ex Ante supply constraints are met. ExAnte-IP-OPT = $4.50.

Ex post feasible item pricing;:
* |If any item is sold to Alice, cannot extract any revenue from Bob.
* The above sequential pricing gets revenue $2.

Better sequential pricing;:
« ToAlice, offer p; = (3,3). @ is bought w.p. Y.
« To Bob, offer p, = (3,2). Pair is bought w.p. %.

Revenue 3/, + >/, = $2.75.

26



Approximating the Ex Ante Relaxation: two components

ExAnte-BM-OPT =
maXfeasiblex Zi BMReV(Di' xi)

BMRGV(Di,xi) =
Max revenue from
BM mech M that
satisfies x; w.r.t. D;

O(logm)

ExAnte-IP-OPT =
MaX,ipe 2 lteMPricingRev(D;, x;)

ItemPricingRev(D;, x;) =
Max revenue from
item pricing p; that
satisfies x; w.r.t. D;

?7?

<:> Sequential item pricing

* Buyers arrive in sequence

» Buyer 1 is offered IP p; and purchases S;.

* Buyer 2 is offered IP p, over [m] \ S; and buys S,.
* Buyer 3 is offered IP p; over [m] \ (§; U S,) ...

Depends on buyers’ valuation functions
* Unit demand or additive: 2
* Subadditive: O(logm)

[C. Christou Dang Huang Kehne Rezvan’'24]
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Question: Is there a “simple” mechanism that approximates the “optimal” one?

Yes, under “mild” assumptions and against an “appropriate” benchmark.

ltem Pricing approximates the Buy Many Optimum in arbitrary single buyer settings
within a factor of O(log #items).

Sequential item pricing approximates the ex-ante Buy Many benchmark when:
m All buyers have gross substitute values - within a factor of O(log #items)
m Al buyers have subadditive values - within a factor of O(log? #items)

No further assumptions necessary.

Cf.: under item independence, sequential two-part tariffs approximate the ex-ante opt revenue when:
m All buyers have gross substitute values - within a factor of O(1) [C. Miller'16]

m All buyers have subadditive values - within a factor of O(log log #items) [Cai Zhao'17, Duetting Kesselheim Lucier’20]

28



Thanks!
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