Revisiting Revenue Maximization for Many Buyers

SHUCHI CHAWLA

JOINT WORK WITH: DIMITRIS CHRISTOU, TRUNG DANG, ZHIYI HUANG, GREG KEHNE, ROJIN REZVAN, YIFENG TENG & CHRISTOS TZAMOS

Revenue Maximization with Many Buyers

A seller with m items for sale n buyers drawn from some population

Value functions

 $v_i: 2^{[m]} \rightarrow \mathbb{R}^+ \cup \{0\}$

Optimal mechanisms can be complicated – even for just one buyer

- Sell random allocations a.k.a. lotteries
- Offer infinitely large menus

[Thanassoulis'04] [Hart Nisan'13]

Buyer *i*'s objective: maximize utility $:= v_i(S_i) - p_i$

Today's Meny \dots \$1 $...$ \$1.5 $\frac{1}{2}$ + $\frac{1}{2}$ \ldots \$1.2

Seller's objective: maximize revenue $:= \sum_i p_i$

Revenue Maximization with Many Buyers

Mechanism:

A seller with m items for sale n buyers drawn from some population

Buyer *i*'s objective: maximize utility $:= v_i(S_i) - p_i$

Optimal mechanisms can be complicated – even for just one buyer

- Sell random allocations a.k.a. lotteries
- Offer infinitely large menus

Buyers impose externalities on each other

- Is it better to allocate a limited supply item to buyer 1 or buyer 2?
- Allocation and pricing can be inscrutable to buyers

Seller's objective: maximize revenue $:= \sum_i p_i$

Question: Is there a "simple" mechanism that approximates the optimal one?

• Grand bundle pricing

…

• Two-part tariffs (i.e. subscription fees + item pricing)

OPT = max_{menu *M* $E_{v \sim D}$ [Revenue of *M* from *v*]} IP-Rev = max $_{\rm{Item}}$ Pricing $_p$ $\rm{E}_{v \sim p}$ [Revenue of p from v Revenue Gap, a.k.a., approximation factor = $\frac{M}{P}$ max distribution D $\frac{M}{P}$ $\frac{N}{P}$ $\frac{N}{P}$ $OPT(D)$ Why approximation? • Detail free ϵ rent "simple" mechanisms Item pricing : $p(S)$

The simplicity vs optimality tradeoff

- VCG with reserve pricing
- Additive pricing, a.k.a. item pricing
- Grand bundle pricing

…

• Two-part tariffs (i.e. subscription fees + item pricing)

Good news: The gap is small (constant factor) in many settings

[Chawla Hartline Kleinberg'07] [Hartline Roughgarden'09] [Chawla Malec Sivan'10] [Li Yao'13] [Babaioff Immorlica Lucier Weinberg'14] [Yao'14] [Rubinstein Weinberg'15] [Chawla Miller'16] [Cai Devanur Weinberg'16] [Cai Zhao'17] [Feng Hartline Li'19] [Kothari Mohan Schvartzman Singla Weinberg'19] …

Question: What else can we say about the gap in the absence of item independence?

• random allocations a.k.a. lotteries

• infinitely large menus

Bad news: Requires strong assumptions – independence of values across items – even for the single buyer setting

Revenue Gap?

There exist value distributions for which
$$
\frac{\text{OPT}}{\text{IP-Rev}} = \infty
$$

OPT = max_{menu M} $E_{v \sim D}$ [Revenue of *M* from *v*] IP-Rev = max_{Item} Pricing $_p$ $\mathrm{E}_{v\sim p}$ [Revenue of p from v

[Briest C. Kleinberg Weinberg'10] [Hart Nisan'13]

5

Part 1: Single-buyer settings

A new benchmark Approximation and other properties

Towards a new benchmark: limiting the power of the seller

[C. Teng Tzamos'19]

Buy-Many mechanisms: the buyer can purchase any multi-set of menu options at the sum of their prices. The buyer obtains an independent draw from each option.

A menu is "buy-many" if the random allocation resulting from any buy-many strategy is "dominated" by a single menu option.

Towards a new benchmark: limiting the power of the seller

Buy-Many mechanisms: the buyer can purchase any multi-set of menu options at buy-wice in Rich Rev(*D*) = maxBuyer carr purchase any inplici-served of *M* from v in star
the sum of their prices. The buyer Material Mindependent draw from each option.

A menu is "buy-many" if the random allocation resulting from any buy-many strategy is "dominated" by a single menu option. New question: Can simple mechanisms approximate BuyManyRev?

Optimal buy-many mechanisms can be well approximated

[C. Teng Tzamos'19] [Briest C. Kleinberg Weinberg'10]

Theorem 1: For $\frac{any}{any}$ value distribution D,

BuyManyRev_D \leq 2 log(2*n*) IP-Rev_D

For example, for $n = 2$ items, we can have $\text{OPT}_D = \infty$ and IP-Rev $_D < \infty$

But we always have IP–Rev_D > 0.36 BuyManyRev_D

Item pricing : $p(S) = \sum_{i \in S} p_i$

Optimal buy-many mechanisms can be well approximated

[Briest C. Kleinberg Weinberg'10]

[C. Teng Tzamos'19]

Theorem 1: For $\frac{any}{any}$ value distribution D,

BuyManyRev_D \leq 2 log(2*n*) IP-Rev_D

Theorem 2: There exists a distribution D over additive valuations such that

BuyManyRev $\geq \Omega(\log n)$ Revenue of any "succinct" mechanism

One that can be described using $2^{o(n^{1/4})}$ bits

Item pricing : $p(S) = \sum_{i \in S} p_i$

Better approximations for structured unit-demand value functions

[C. Rezvan Teng Tzamos'22]

■ FedEx setting: items are ordered and each buyer desires a minimum quality level i.e. for buyer of type (v, i) , $v_1 = v_2 = \cdots = v_i = v$ and $v_{\{i+1\}} = \cdots = v_n = 0$.

IP−Rev = BuyManyRev

■ Ordered values: $v_1 \ge v_2 \ge \cdots \ge v_n$ for all buyers i.e. item 1 is better than item 2, which is better than item 3, and so on.

IP-Rev $\geq O(1)$ BuyManyRev

 k sets of ordered items (i.e. partial order of width k)

IP-Rev $\geq O(\log k)$ BuyManyRev

What about a 99% approximation to optimal revenue?

Menu size complexity: min number of menu options needed to describe the mechanism [Hart-Nisan'13]

How many menu options do we need to get 99% of the optimal revenue?

- Infinitely many in general [Hart-Nisan'13]
- Finite (but exponential in n) only known in settings where the buyer has "nice" values over independent items [Babaioff et al.'17, Kothari et al.'19, ...]

Theorem 3: For <u>any</u> value distribution D and $\epsilon \in [0,1]$, there exists a menu M of finite size $f(n, \epsilon)$, such that, [C. Teng Tzamos'20]

 $\text{Rev}_D(M) \geq (1 - \epsilon)$ BuyManyRev_n

Need $f(n, \epsilon) = (1/\epsilon)^{2^{O(n)}}$.

Tight: any smaller menu will only get an $O(\log n)$ fraction of the revenue.

Revenue monotonicity

Suppose that values of all buyers in the market increase (but non-uniformly). What happens to the optimal revenue?

- Single item: revenue increases
- General multi-item settings: revenue may decrease! [Hart-Reny'15]

What about buy-many mechanisms?

Optimal revenue may decrease [C. Teng Tzamos'20]

… but not by much.

Revenue continuity

Suppose that values of all buyers in the market change by small multiplicative amounts:

Every $v \sim D$ is perturbed to v' such that $\forall S \subseteq [n], v'(S) \in (1 \pm \epsilon)v(S)$.

What happens to the optimal revenue?

- Single item: revenue changes slightly, by $1 \pm O(\epsilon)$
- General multi-item settings: revenue can change significantly!
	- OPT_D = ∞ and OPT_D^{\prime} < ∞ ′ < ∞ [Psomas et al.'19]

Theorem 4: For $\frac{\text{any}}{\text{value}}$ distribution D and $\frac{\text{any}}{\text{value}}$ multiplicative perturbation D':

BuyManyRev_{D'} $\geq (1 - \text{poly}(n, \epsilon))$ BuyManyRev_D

The dependence on n is necessary

What makes buy-many menus well-behaved?

Observation 1:

If x and x' are two "close enough" random allocations, they cannot be priced very differently.

 \Rightarrow mechanism can only price discriminate to a limited extent.

Observation 2:

If ν and ν' are two "close enough" valuations resulting in similar allocations but very different payments, either a slight perturbation of prices removes this price discrimination, or such buyers cannot contribute too much to optimal revenue

Observation 3:

Additive pricings point-wise n -approximate buy-many menus (a.k.a. subadditive pricings)

Lemma: Let p and q be any pricing functions such that q pointwise c -approximates p . Then there exists a distribution over scaling factors $\alpha > 0$, such that for any buyer, (The price paid by the buyer under αq) $\geq \frac{1}{2\sqrt{3}}$ $\frac{1}{2 log 2c}$ (The price paid by the buyer under p)

It's just a benchmark…

- We don't know how to compute an optimal buy-many menu
- We don't know how a buyer would find the optimal buy-many strategy given a menu.

Part 2: Multi-buyer settings

Extending the benchmark Approximation

An attempt to extend the benchmark

- Single-buyer definition: the buyer can purchase any multi-set of menu options at the sum of their prices. I.e., buyer can participate in the mechanism multiple times.
- Multi-buyer definition: allow each buyer to participate in the mechanism many times?

Two facets of the buy-many constraint

As a strengthening of buyers' power

- Buyer can interact with mechanism multiple times
- \blacksquare Unlimited supply \Rightarrow static menu across interactions
- \blacksquare Limited supply \Rightarrow seller can distinguish between and discriminate across different interactions

Offers no benefit over original OPT

As a weakening of the seller's power

- Single interaction between buyer and seller, but,
- Super-additive pricing is simply disallowed in buyer-seller interaction

We will use this as the basis of our new benchmark

Not the same in multiple buyer settings!

Buy-many mechanisms for multiple buyers: Take 1

1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu

Buy-many mechanisms for multiple buyers: Take 2

- 1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu
- 2. Seller runs a direct mechanism; "ex-post" pricing offered to each buyer is buy-many

Buy-many mechanisms for multiple buyers: Take 3

- 1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu
- 2. Seller runs a direct mechanism; "ex-post" pricing offered to each buyer is buy-many
- 3. Seller runs a direct mechanism; "ex-ante" pricing offered to each buyer is buy-many

Buy-many mechanisms for multiple buyers: Take 3, …

- 1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu
- 2. Seller runs a direct mechanism; "ex-post" pricing offered to each buyer is buy-many
- 3. Seller runs a direct mechanism; "ex-ante" pricing offered to each buyer is buy-many
- 4. …

Which definition should we use???

The Buy-Many benchmark for many buyers [C. Rezvan Teng Tzamos'23]

- Many ways to decompose a multi-buyer mechanism into its single buyer constituents
- Ex Ante relaxation $-$ a convenient upper bound that captures many of these extensions. [Alaei'11]

Relax the ex post supply constraint to an ex ante supply constraint:

"For every instantiation of $v_i{\sim}D_i$, each item is allocated to at most one buyer" *In expectation over*

 \blacksquare Let $M_1, M_2, ...$ be buy-many mechanisms such that

 $(x_1, x_2, ..., x_n)$ is ex ante feasible if $\sum_i x_{ij} \le 1$ for all j

 $\sum_i \Pr[M_i \text{ sells item } j \text{ to buyer } i] \leq 1$ for all items j.

ExAnte-BuyMany-OPT is the most revenue that can be obtained by such a tuple.

The Buy-Many benchmark for many buyers [C. Rezvan Teng Tzamos'23]

- Many ways to decompose a multi-buyer mechanism into its single buyer constituents
- Ex Ante relaxation $-$ a convenient upper bound that captures many of these extensions. [Alaei'11]

Relax the ex post supply constraint to an ex ante supply constraint:

"For every instantiation of $v_i{\sim}D_i$, each item is allocated to at most one buyer" *In expectation over*

Mechanism *M* satisfies ex ante supply constraint $y \in \mathbb{R}^m$ with respect to value distribution D if: for all items *j*, Pr Pr [buyer with value v buys j in M] $\leq y_j$.

 $BMRev(D, y) :=$ the most revenue achievable by a buymany mechanism that satisfies v .

 $(x_1, x_2, ..., x_n)$ is ex ante feasible if $\sum_i x_{ij} \le 1$ for all j

ExAnte-BM-OPT $=$ $\max_{\text{Ex ante feasible } x}$ [$\sum_i \text{BMRev}(D_i, x_i)$]

ExAnte-IP-OPT= $\max_{\text{Ex ante feasible } x}$ [Σ_i ItemPricingRev(D_i , $x_i)$]

For an Folistributions \mathcal{D}_1 item $\mathcal{D}_{\widehat{n}}$ over m items," ExAnte-BM-OPT $\leq \mathcal{D}(\log m)$ • ExAnte-IP-ORT $v(D,y)$

Tight!

Ex Ante versus Ex Post feasible mechanisms

w.p. $\frac{1}{2}$: only \rightarrow for \$1 w.p. $\frac{1}{2}$: only \bullet for \$3

Ex Ante optimal item pricing:

- To Alice, offer $p_1 = (1,3)$. Allocation probabilities are $(1/2, 1/2)$.
- To Bob, offer $p_2 = (3,2)$. Allocation probabilities are $(4/2, 4/2)$.

Ex Ante supply constraints are met. ExAnte-IP-OPT = \$4.50.

w.p. $\frac{1}{2}$: \rightarrow for \$0; \bullet for \$0; Pair for \$5 w.p. $\frac{1}{2}$: \$0 for all allocations Ex post feasible item pricing:

- If any item is sold to Alice, cannot extract any revenue from Bob.
- The above sequential pricing gets revenue \$2.

Better sequential pricing:

- To Alice, offer $p_1 = (3,3)$. is bought w.p. $\frac{1}{2}$.
- To Bob, offer $p_2 = (3,2)$. Pair is bought w.p. $\frac{1}{4}$.

Revenue $\frac{3}{2} + \frac{5}{4} = 2.75 .

Approximating the Ex Ante Relaxation: two components

Question: Is there a "simple" mechanism that approximates the "optimal" one?

Yes, under "mild" assumptions and against an "appropriate" benchmark.

Item Pricing approximates the Buy Many Optimum in arbitrary single buyer settings within a factor of O(log #items).

Sequential item pricing approximates the ex-ante Buy Many benchmark when:

- All buyers have gross substitute values within a factor of $O(log$ #items)
- All buyers have subadditive values within a factor of $O(\log^2$ #items)

No further assumptions necessary.

Cf.: under item independence, sequential two-part tariffs approximate the ex-ante opt revenue when:

- All buyers have gross substitute values within a factor of $O(1)$ [C. Miller'16]
- All buyers have subadditive values within a factor of $O(\log \log \# items)$ [Cai Zhao'17, Duetting Kesselheim Lucier'20]

Thanks!