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Revenue Maximization with Many Buyers
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Value functions 

𝑣𝑖: 2[𝑚] → ℝ+ ∪ {0}   

A seller with 𝑚 items for sale 𝑛 buyers drawn from some population

𝑣1~𝐷1 𝑣2~𝐷2

Mechanism: 

(𝑣1, … , 𝑣𝑛) → (𝑆1, … , 𝑆𝑛; 𝑝1, … , 𝑝𝑛)

Buyer 𝑖’s objective: maximize utility ≔ 𝑣𝑖(𝑆𝑖) − 𝑝𝑖

Seller’s objective: maximize revenue ≔ σ𝑖 𝑝𝑖

Allocations Payments

2

Optimal mechanisms can be complicated – 

even for just one buyer

• Sell random allocations a.k.a. lotteries

• Offer infinitely large menus

½      + ½      ⋯ $1.2

⋯ $1

⋯ $1.5

[Thanassoulis’04]

[Hart Nisan’13]
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A seller with 𝑚 items for sale 𝑛 buyers drawn from some population

𝑣1~𝐷1 𝑣2~𝐷2

Seller’s objective: maximize revenue ≔ σ𝑖 𝑝𝑖

Allocations Payments
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Buyers impose externalities on each other

• Is it better to allocate a limited supply item 

to buyer 1 or buyer 2?

• Allocation and pricing can be inscrutable 

to buyers

Question: Is there a “simple” mechanism that approximates the optimal one?

Optimal mechanisms can be complicated – 

even for just one buyer

• Sell random allocations a.k.a. lotteries

• Offer infinitely large menus

Mechanism: 

(𝑣1, … , 𝑣𝑛) → (𝑆1, … , 𝑆𝑛; 𝑝1, … , 𝑝𝑛)

Buyer 𝑖’s objective: maximize utility ≔ 𝑣𝑖(𝑆𝑖) − 𝑝𝑖

$2

$3



The simplicity vs optimality tradeoff
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• random allocations a.k.a. lotteries

• infinitely large menus

• VCG with reserve pricing

• Additive pricing, a.k.a. item pricing

• Grand bundle pricing

• Two-part tariffs (i.e. subscription fees + item pricing)

…

Revenue Gap?

OPT = maxmenu 𝑀 E𝑣~𝐷 Revenue of 𝑀 from 𝑣

IP-Rev = maxItem Pricing 𝑝 E𝑣~𝐷 Revenue of 𝑝 from 𝑣

Revenue Gap, a.k.a., approximation factor = 

maxdistribution 𝐷  
OPT(𝐷)

IP−Rev(𝐷)

Why approximation?

• Detail free

• Helps distinguish/choose between different “simple” mechanisms

Item pricing :   𝑝 𝑆 = σ𝑖∈𝑆 𝑝𝑖



The simplicity vs optimality tradeoff
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Good news: The gap is small (constant factor) in many settings

[Chawla Hartline Kleinberg’07] [Hartline Roughgarden’09]   [Chawla Malec 

Sivan’10] [Li Yao’13] [Babaioff Immorlica Lucier Weinberg’14] [Yao’14] 

[Rubinstein Weinberg’15] [Chawla Miller’16] [Cai Devanur Weinberg’16] [Cai 

Zhao’17] [Feng Hartline Li’19] [Kothari Mohan Schvartzman Singla Weinberg’19] 

…

Bad news: Requires strong assumptions – independence of values across items – even for the single buyer setting

There exist value distributions for which 
OPT

IP−Rev
= ∞ 

[Briest C. Kleinberg Weinberg’10]

[Hart Nisan’13]

OPT = maxmenu 𝑀 E𝑣~𝐷 Revenue of 𝑀 from 𝑣

Question: What else can we say about the 

gap in the absence of item independence?

• random allocations a.k.a. lotteries

• infinitely large menus

• VCG with reserve pricing

• Additive pricing, a.k.a. item pricing

• Grand bundle pricing

• Two-part tariffs (i.e. subscription fees + item pricing)

…

Revenue Gap?

IP-Rev = maxItem Pricing 𝑝 E𝑣~𝐷 Revenue of 𝑝 from 𝑣
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Part 1: Single-buyer settings

A new benchmark
Approximation and other properties



Towards a new benchmark: limiting the power of the seller

Buy-Many mechanisms: the buyer can purchase any multi-set of menu options at 

the sum of their prices. The buyer obtains an independent draw from each option.

⋯ $2.99

⋯ $1

⋯ $1

A menu is “buy-many” if the random allocation resulting from any buy-many 

strategy is “dominated” by a single menu option.

Cheaper price; Bigger allocation
7

[C. Teng Tzamos’19]

𝑣  = $1

𝑣  = $0

𝑣  = $0

𝑣  = $1

𝑣  = $2

𝑣  = $2

Additive buyer



Towards a new benchmark: limiting the power of the seller

⋯ $3

⋯ $1

⋯ $1

⋯ $2

⋯ $1

⋯ $5

⋯ $1.5

⋯ $2

⋯ $2

Not buy-many Buy-manyNot buy-many

½(           )½(    )+½(    )

buy-many 

≈ 

subadditivity
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Buy-Many mechanisms: the buyer can purchase any multi-set of menu options at 

the sum of their prices. The buyer obtains an independent draw from each option.

A menu is “buy-many” if the random allocation resulting from any buy-many 

strategy is “dominated” by a single menu option.

BuyManyRev(D) = maxBuyMany menu 𝑀 E𝑣~𝐷 Revenue of 𝑀 from 𝑣

New question: Can simple mechanisms approximate BuyManyRev?



Optimal buy-many mechanisms can be well approximated

Theorem 1: For any value distribution 𝐷,

  BuyManyRev𝐷 ≤ 2 log 2𝑛  IP−Rev𝐷

For example, for 𝑛 = 2 items, we can have OPT𝐷 = ∞ and IP−Rev𝐷 < ∞ 

      But we always have IP−Rev𝐷 > 0.36 BuyManyRev𝐷

[C. Teng Tzamos’19]

[Briest C. Kleinberg Weinberg’10]

Item pricing :   𝑝 𝑆 = σ𝑖∈𝑆 𝑝𝑖



Optimal buy-many mechanisms can be well approximated

Theorem 1: For any value distribution 𝐷,

  BuyManyRev𝐷 ≤ 2 log 2𝑛  IP−Rev𝐷

Theorem 2: There exists a distribution 𝐷 over additive valuations such that

  BuyManyRev ≥ Ω log 𝑛  Revenue of any “succinct” mechanism

One that can be described 

using 2𝑜(𝑛1/4) bits 

IP−Rev

BuyManyRev

Θ(log 𝑛)

∞

OPT

∞

[C. Teng Tzamos’19]

[Briest C. Kleinberg Weinberg’10]

Item pricing :   𝑝 𝑆 = σ𝑖∈𝑆 𝑝𝑖



Better approximations for structured unit-demand value functions

■ FedEx setting: items are ordered and each buyer desires a minimum quality level

i.e. for buyer of type (𝑣, 𝑖), 𝑣1 = 𝑣2 = ⋯ = 𝑣𝑖 = 𝑣 and 𝑣 𝑖+1 = ⋯ = 𝑣𝑛 = 0.

IP−Rev = BuyManyRev

■ Ordered values: 𝑣1 ≥ 𝑣2 ≥ ⋯ ≥ 𝑣𝑛 for all buyers

i.e. item 1 is better than item 2, which is better than item 3, and so on.  

IP−Rev ≥ 𝑂 1  BuyManyRev

■ 𝑘 sets of ordered items (i.e. partial order of width 𝑘)

IP−Rev ≥ 𝑂 log 𝑘  BuyManyRev

[C. Rezvan Teng Tzamos’22]



What about a 99% approximation to optimal revenue?

Menu size complexity: min number of menu options needed to describe the mechanism

How many menu options do we need to get 99% of the optimal revenue?

– Infinitely many in general

– Finite (but exponential in 𝑛) only known in settings where the buyer has “nice” values over independent items

Theorem 3: For any value distribution 𝐷 and 𝜖 ∈ [0,1], there exists a menu 𝑀 of finite size 𝑓(𝑛, 𝜖),  

     such that,

   Rev𝐷(𝑀) ≥ (1 − 𝜖)BuyManyRev𝐷

■ Need 𝑓 𝑛, 𝜖 = ( Τ1
𝜖)2𝑂(𝑛)

.

■ Tight: any smaller menu will only get an 𝑂(log 𝑛) fraction of the revenue.

[C. Teng Tzamos’20]

[Hart-Nisan’13]

[Babaioff et al.’17, Kothari et al.’19, …]

[Hart-Nisan’13]



Revenue monotonicity

Suppose that values of all buyers in the market increase (but non-uniformly).

What happens to the optimal revenue?

■ Single item: revenue increases

■ General multi-item settings: revenue may decrease! [Hart-Reny’15]

What about buy-many mechanisms?

■ Optimal revenue may decrease

 … but not by much. 

[C. Teng Tzamos’20]



Revenue continuity

Suppose that values of all buyers in the market change by small multiplicative amounts:

 Every 𝑣~𝐷 is perturbed to 𝑣′ such that ∀𝑆 ⊆ 𝑛 , 𝑣′ 𝑆 ∈ 1 ± 𝜖 𝑣(𝑆).

What happens to the optimal revenue?

■ Single item: revenue changes slightly, by 1 ± 𝑂(𝜖)

■ General multi-item settings: revenue can change significantly! 

– OPT𝐷 = ∞ and OPT𝐷′ < ∞         [Psomas et al.’19]

Theorem 4: For any value distribution 𝐷 and any multiplicative perturbation 𝐷′: 

  BuyManyRev𝐷′ ≥ (1 − poly(𝑛, 𝜖))BuyManyRev𝐷

The dependence on 𝑛 

is necessary



What makes buy-many menus well-behaved?

Observation 1:

■ If 𝑥 and 𝑥′ are two “close enough” random allocations, they cannot be priced very differently.

 ⟹ mechanism can only price discriminate to a limited extent.

Observation 2:

■ If 𝑣 and 𝑣′ are two “close enough” valuations resulting in similar allocations but very different payments, 

either a slight perturbation of prices removes this price discrimination, or such buyers cannot contribute 

too much to optimal revenue

Observation 3: 

■ Additive pricings point-wise 𝑛-approximate buy-many menus (a.k.a. subadditive pricings)

Lemma: Let 𝑝 and 𝑞 be any pricing functions such that 𝑞 pointwise 𝑐-approximates 𝑝.

                Then there exists a distribution over scaling factors 𝛼 > 0, such that for any buyer,

                (The price paid by the buyer under 𝛼𝑞) ≥
1

2 𝑙𝑜𝑔 2𝑐
 (The price paid by the buyer under 𝑝)



It’s just a benchmark…

■ We don’t know how to compute an optimal buy-many menu

■ We don’t know how a buyer would find the optimal buy-many strategy given a menu.

16
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Part 2: Multi-buyer settings

Extending the benchmark
Approximation



An attempt to extend the benchmark

■ Single-buyer definition: the buyer can purchase any multi-set of menu options at the sum of their prices. 

I.e., buyer can participate in the mechanism multiple times.

■ Multi-buyer definition: allow each buyer to participate in the mechanism many times?

18

Day 1: 

Item offered to buyer 1 for $3

Day 2: 

Item offered to buyer 2 for $2

Buyer purchases with prob. ½ 

Day 3: 

If item still available,

 offered to buyer 1 for $1

w.p. ½, value = $6

w.p. ½, value = $1

w.p. ½, value = $2

w.p. ½, value = $0

Not buy-many

⋯ $3

⋯ $1½(   )



Two facets of the buy-many constraint

As a strengthening of buyers’ power

■ Buyer can interact with mechanism multiple 

times

■ Unlimited supply ⟹ static menu across 

interactions

■ Limited supply ⟹ seller can distinguish 

between and discriminate across different 

interactions

As a weakening of the seller’s power

■ Single interaction between buyer and seller, 

but,

■ Super-additive pricing is simply disallowed in 

buyer-seller interaction

19

Not the same in multiple buyer settings!

Offers no benefit over original OPT

We will use this as the basis of our new benchmark



Buy-many mechanisms for multiple buyers: Take 1

1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu

20



1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu

2. Seller runs a direct mechanism; “ex-post” pricing offered to each buyer is buy-many

Buy-many mechanisms for multiple buyers: Take 2

21

{(𝑆1, 𝑝1)} over possible choices 

of 𝑣2 form a buy-many menu.

{(𝑆2, 𝑝2)} over possible choices 

of 𝑣1 form a buy-many menu.



1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu

2. Seller runs a direct mechanism; “ex-post” pricing offered to each buyer is buy-many

3. Seller runs a direct mechanism; “ex-ante” pricing offered to each buyer is buy-many

Buy-many mechanisms for multiple buyers: Take 3

22

𝐸𝑣2
[𝑀1] forms a buy-many menu.

𝐸𝑣1
[𝑀2] forms a buy-many menu.



1. Seller interacts with each buyer once; in some arbitrary sequence; offers buy-many menu

2. Seller runs a direct mechanism; “ex-post” pricing offered to each buyer is buy-many

3. Seller runs a direct mechanism; “ex-ante” pricing offered to each buyer is buy-many

4. …

Which definition should we use???

Buy-many mechanisms for multiple buyers: Take 3, …

23



The Buy-Many benchmark for many buyers [C. Rezvan Teng Tzamos’23]

■ Many ways to decompose a multi-buyer mechanism into its single buyer constituents

■ Ex Ante relaxation – a convenient upper bound that captures many of these extensions.

       Relax the ex post supply constraint to an ex ante supply constraint: 

 “For every instantiation of 𝑣𝑖~𝐷𝑖, each item is allocated to at most one buyer”

■ Let 𝑀1, 𝑀2, … be buy-many mechanisms such that 

   σ𝑖 Pr[𝑀𝑖  sells item 𝑗 to buyer 𝑖] ≤ 1 for all items 𝑗.

■ ExAnte-BuyMany-OPT is the most revenue that can be obtained by such a tuple.

24

[Alaei’11]

In expectation over

(𝑥1, 𝑥2, … , 𝑥𝑛) is ex ante feasible if σ𝑖 𝑥𝑖𝑗 ≤ 1 for all 𝑗



The Buy-Many benchmark for many buyers [C. Rezvan Teng Tzamos’23]

■ Many ways to decompose a multi-buyer mechanism into its single buyer constituents

■ Ex Ante relaxation – a convenient upper bound that captures many of these extensions.

       Relax the ex post supply constraint to an ex ante supply constraint: 

 “For every instantiation of 𝑣𝑖~𝐷𝑖, each item is allocated to at most one buyer”
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[C. Rezvan Teng Tzamos’23]

For any distribution 𝐷 over 𝑚 items and any 𝑦 ∈ ℝ𝑚 , BMRev 𝐷, 𝑦 ≤ 𝑂(log 𝑚) ∙ ItemPricingRev(𝐷, 𝑦)

Tight!

[Alaei’11]

In expectation over

(𝑥1, 𝑥2, … , 𝑥𝑛) is ex ante feasible if σ𝑖 𝑥𝑖𝑗 ≤ 1 for all 𝑗
Mechanism 𝑀 satisfies ex ante supply constraint 𝑦 ∈ ℝ𝑚

with respect to value distribution 𝐷 if:

for all items 𝑗, Pr
𝑣~𝐷

buyer with value 𝑣 buys 𝑗 in 𝑀 ≤ 𝑦𝑗 .

BMRev 𝐷, 𝑦 ≔ the most revenue achievable by a buy-

many mechanism that satisfies 𝑦.

ExAnte-BM-OPT= maxEx ante feasible 𝑥 [ σ𝑖 BMRev 𝐷𝑖 , 𝑥𝑖  ]

ExAnte-IP-OPT= maxEx ante feasible 𝑥 [ σ𝑖 ItemPricingRev 𝐷𝑖 , 𝑥𝑖  ]

For any distributions 𝐷1, … , 𝐷𝑛  over 𝑚 items, ExAnte-BM-OPT ≤ 𝑂(log 𝑚) ∙ ExAnte-IP-OPT



Ex Ante versus Ex Post feasible mechanisms

26

w.p. ½ : only        for $1

w.p. ½ : only       for $3

Ex Ante optimal item pricing:

• To Alice, offer 𝑝1 = 1,3 . Allocation probabilities are (½, ½).

• To Bob, offer 𝑝2 = 3,2 . Allocation probabilities are (½, ½).

Ex Ante supply constraints are met. ExAnte-IP-OPT = $4.50.

w.p. ½:        for $0;     for $0; Pair for $5

w.p. ½: $0 for all allocations Ex post feasible item pricing:

• If any item is sold to Alice, cannot extract any revenue from Bob.

• The above sequential pricing gets revenue $2.

Better sequential pricing:

• To Alice, offer 𝑝1 = 3,3 .      is bought w.p. ½. 

• To Bob, offer 𝑝2 = 3,2 . Pair is bought w.p. ¼.

Revenue Τ3
2 + Τ5

4 = $2.75.



Approximating the Ex Ante Relaxation: two components

BMRev 𝐷𝑖, 𝑥𝑖 = 

 Max revenue from 

BM mech 𝑀 that 

satisfies 𝑥𝑖 w.r.t. 𝐷𝑖

ExAnte-BM-OPT =

    maxfeasible 𝑥 σ𝑖 BMRev 𝐷𝑖, 𝑥𝑖  

ItemPricingRev 𝐷𝑖, 𝑥𝑖 = 

Max revenue from 

item pricing 𝑝𝑖 that 

satisfies 𝑥𝑖 w.r.t. 𝐷𝑖

27

ExAnte-IP-OPT =

    maxfeasible 𝑥 σ𝑖 ItemPricingRev 𝐷𝑖, 𝑥𝑖  

• Buyers arrive in sequence

• Buyer 1 is offered IP 𝑝1 and purchases 𝑆1.

• Buyer 2 is offered IP 𝑝2 over 𝑚 ∖ 𝑆1 and buys 𝑆2.

• Buyer 3 is offered IP 𝑝3 over 𝑚 ∖ 𝑆1 ∪ 𝑆2  …

…

Sequential item pricing

Θ(log 𝑚) ??

Depends on buyers’ valuation functions

• Unit demand or additive: 2

• Subadditive: 𝑂(log 𝑚)

• …

[C. Christou Dang Huang Kehne Rezvan’24]



Item Pricing approximates the Buy Many Optimum in arbitrary single buyer settings  
     within a factor of O(log #items).

Sequential item pricing approximates the ex-ante Buy Many benchmark when:

■ All buyers have gross substitute values – within a factor of O(log #items)

■ All buyers have subadditive values – within a factor of O(log2 #items)

No further assumptions necessary.

Cf.: under item independence, sequential two-part tariffs approximate the ex-ante opt revenue when:

■ All buyers have gross substitute values – within a factor of O(1)

■ All buyers have subadditive values – within a factor of O(log log #items)

28

Yes, under “mild” assumptions and against an “appropriate” benchmark.

Question: Is there a “simple” mechanism that approximates the “optimal” one?

[Cai Zhao’17, Duetting Kesselheim Lucier’20]

[C. Miller’16]
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Thanks!
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