Revenue maximization with the Buy Many constraint

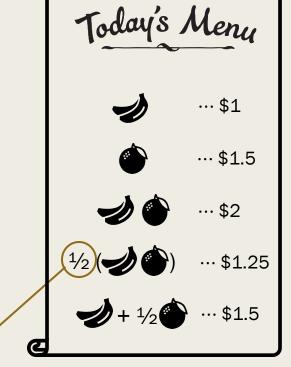
SHUCHI CHAWLA UNIVERSITY OF WISCONSIN-MADISON

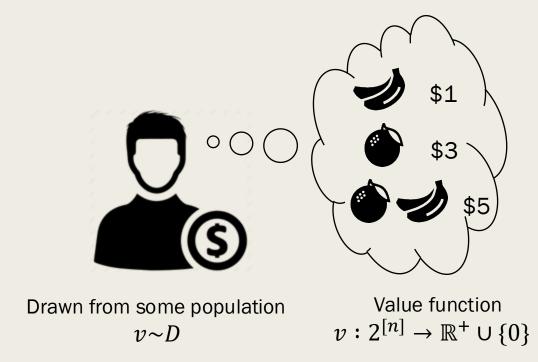
JOINT WORK WITH: YIFENG TENG & CHRISTOS TZAMOS

Revenue maximization with a single buyer

n items for sale

Probability of allocation





Selling mechanism \equiv Menu of captions ized options

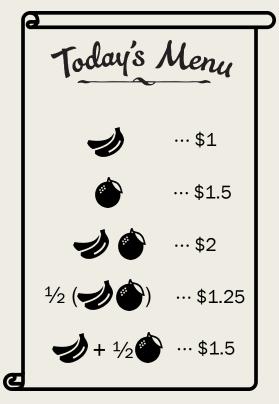
What does the optimal menu look like?

Is randomness necessary?

Yes for n > 1(No for n = 1)

[Thanassoulis'04] [Myerson'81]

How many menu options?
Unbounded in *n* for n > 1 [Hart-Nisan'13]
(One for n = 1)



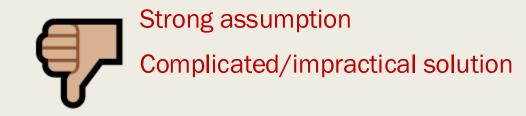
Is the optimal mechanism easy to compute?
No, not even in simple cases! [Chen-Diakonikolas-Orfanou-Paparas-Sun-Yannakakis'15]

Can we approximate revenue?

Two principal approaches...

Approach # 1: computational approach

Exact optimization when the value distribution has small support \leftarrow the optimum is the solution to an LP



Approach # 2: approximation for "nice" valuation functions

If values for different items are independent:

- Unit-demand valuations \Rightarrow item prices give a 4-approximation
- Additive valuations \Rightarrow item or grand bundle pricing gives a 6-approximation
- Subadditive valuations \Rightarrow item or grand bundle pricing gives an O(1)-approx

[C. Hartline Kleinberg'07, C. Hartline Malec Sivan'10, C. Malec Sivan'10, Li Yao'13, Babaioff Immorlica Lucier Weinberg'14, Rubinstein Weinberg'15, Kothari Mohan Schvartzman Singla Weinberg'19, ...]

Posted pricing a.k.a. the grocery store mechanism

Item pricing : $p(S) = \sum_{i \in S} p_i$

Grand bundle pricing : p(S) = p([n])

Approach # 2: approximation for "nice" valuation functions

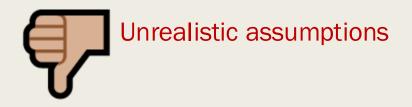
If values for different items are independent:

• Unit-demand valuations \Rightarrow item prices give a 4-approximation

Can relax a little bit [C. Malec Sivan'10, Psomas Schvartzman Weinberg'19]

- Additive valuations \Rightarrow item or grand bundle pricing gives a 6-approximation
- Subadditive valuations \Rightarrow item or grand bundle pricing gives an O(1)-approx

[C. Hartline Kleinberg'07, C. Hartline Malec Sivan'10, C. Malec Sivan'10, Li Yao'13, Babaioff Immorlica Lucier Weinberg'14, Rubinstein Weinberg'15, Kothari Mohan Schvartzman Singla Weinberg'19, ...]



What about arbitrary value distributions?

With two items, there exists an instance with a unit-demand buyer for which:

- Optimal revenue = ∞
- Item pricing revenue < some constant
- Revenue of any deterministic mechanism < some constant</p>

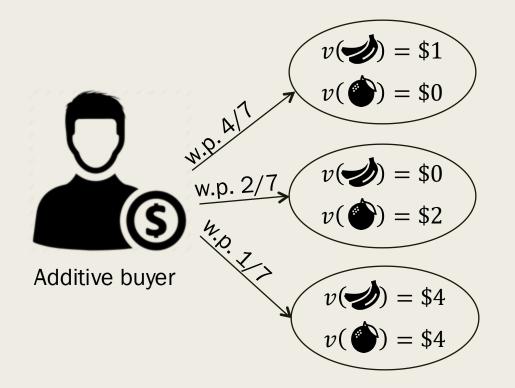
[Briest C. Kleinberg Weinberg'10, Hart Nisan'13]

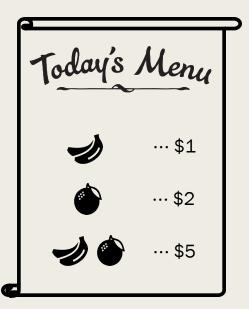
These large gaps do not go away we perturb values drawn from a worst case distribution by small amounts. [Psomas Schvartzman Weinberg'19]

What hope do we have for revenue maximization in a real-world setting?

Alternate approach: optimize over "reasonable" mechanisms

Optimal mechanisms can be "unreasonable": charge super-additive prices



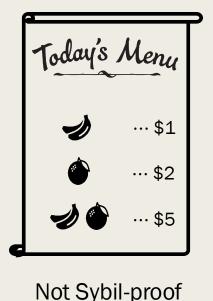


Optimal deterministic menu

Buy-many mechanisms, a.k.a. Sybil-proof mechanisms

"In a Sybil attack the attacker subverts ... by creating a large number of pseudonymous identities, using them to gain a disproportionately large influence."

In a Sybil strategy, a buyer can purchase any multi-set of menu options at the sum of their prices. The buyer obtains an independent draw from each option.



Not Sybil-proof

Sybil-proof

Buy-many mechanisms, a.k.a. Sybil-proof mechanisms

"In a Sybil attack the attacker subverts ... by creating a large number of pseudonymous identities, using them to gain a disproportionately large influence."

- In a Sybil strategy, a buyer can purchase any multi-set of menu options at the sum of their prices. The buyer obtains an independent draw from each option.
- A menu is Sybil-proof if the random allocation resulting from any Sybil strategy is "dominated" by a single menu option.

Cheaper price; Bigger allocation

• For deterministic pricings, Sybil-proofness \equiv subadditivity

Approximability and other properties of Buy-Many mechanisms

Optimal buy-many mechanisms can be well approximated

[C. Teng Tzamos'19]

Theorem 1: For <u>any</u> value distribution *D*,

Sybil-proof $OPT \le O(\log n)$ Revenue of Item Pricing

Theorem 2: There exists a distribution D over additive valuations such that

Subadditive Deterministic OPT $\geq \Omega(\log n)$ Revenue of any "succinct" mechanism

One that can be described using $2^{o(n^{1/4})}$ bits

Previous work showed...

[Babaioff Nisan Rubinstein'18]: \exists product distributions over additive values for which Sybil-proof OPT < OPT.

[Briest Chawla Kleinberg Weinberg'10]: For any distribution D over unit-demand valuations, Sybil-proof OPT $\leq O(\log n)$ Item Pricing Rev. Optimal buy-many mechanisms can be well approximated

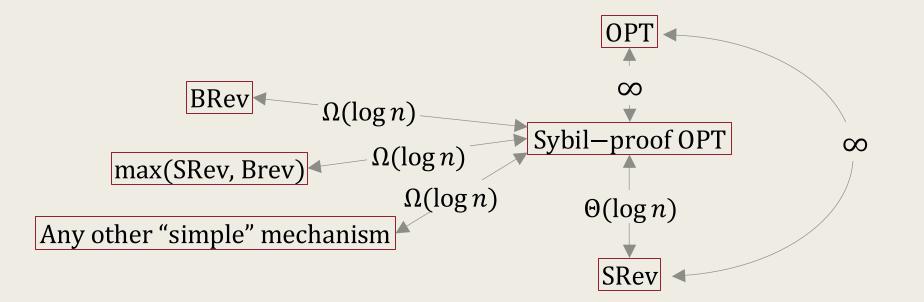
[C. Teng Tzamos'19]

Theorem 1: For <u>any</u> value distribution D,

Sybil-proof $OPT \le O(\log n)$ Revenue of Item Pricing

Theorem 2: There exists a distribution *D* over additive valuations such that

Subadditive Deterministic OPT $\geq \Omega(\log n)$ Revenue of any "succinct" mechanism



Other desirable properties...

"Small" menu sizes?

■ Can get a finite bound over $(1 - \epsilon)$ -approximate menus

Revenue monotonicity for additive valuations?

Likely doesn't hold

Revenue Lipschitzness?

[Psomas et al.'19] show that Lipschitzness doesn't hold for general mechanisms

Holds for Buy-Many mechanisms!

What makes buy-many menus well-behaved?

- If x and x' are two "close enough" random allocations, they cannot be priced very differently.
- \Rightarrow mechanism can only price discriminate to a limited extent.

Key lemma: Additive pricings point-wise *n*-approximate buy-many menus

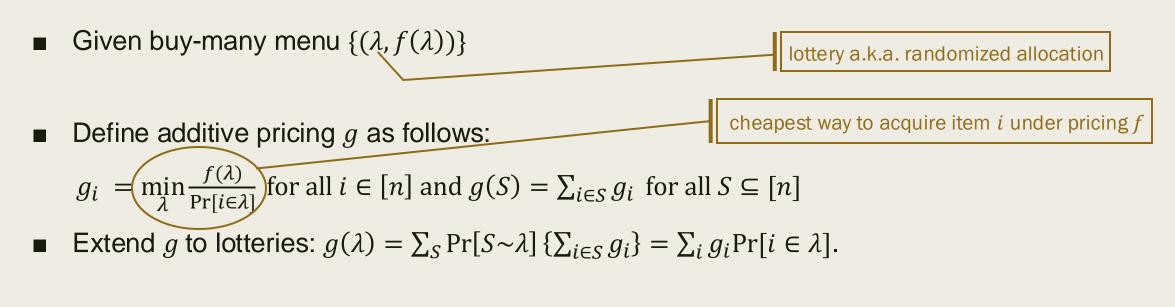
Additive pricings point-wise *n*-approximate subadditive pricings

- Sybil-proofness in deterministic pricings f requires: $f(A \cup B) \le f(A) + f(B)$ for all subsets $A, B \subseteq [n]$
- Define additive pricing g as follows:

$$g_i = f_i$$
 for all $i \in [n]$ and $g(S) = \sum_{i \in S} g_i$ for all $S \subseteq [n]$
Then:

$$\frac{1}{n}g(S) = \frac{1}{n}\sum_{i\in S}f_i \le \max_{i\in S}f_i \le f(S) \le \sum_{i\in S}f_i = g(S)$$

Additive pricings point-wise *n*-approximate buy-many menus



- Since f is buy-many, $g(\lambda) \ge f(\lambda)$.
- On the other hand, $f(\lambda) \ge g_i \Pr[i \in \lambda] \forall i$. Therefore, $f(\lambda) \ge \frac{1}{n} \sum_i g_i \Pr[i \in \lambda] = \frac{1}{n} g(\lambda)$.

 $\Rightarrow \frac{1}{n}g(\lambda) \le f(\lambda) \le g(\lambda)$

A proof of the O(log n) approximation

Theorem 1: For any distribution *D* over valuations.

and any buy-many pricing function f: (random) allocations $\rightarrow \mathbb{R}^+ \cup \{0\}$,

there exists an additive pricing function g with

$$\operatorname{Rev}_D(g) \ge \frac{1}{2\log(2n)} \operatorname{Rev}_D(f)$$

Key technical claim: Point-wise approximation implies revenue approximation.

Theorem 3: Given any pricing functions f and g such that for all random allocations Λ , $\frac{1}{c}g(\Lambda) \leq f(\Lambda) \leq g(\Lambda)$. Then for any value distribution D, there exists a scaling factor $\alpha > 0$, such that $\operatorname{Rev}_D(\alpha g) \geq \frac{1}{2\log 2c} \operatorname{Rev}_D(f)$. Theorem 1: For any distribution *D* over valuations.

and any determ. subadditive pricing function f: (random) allocations $\rightarrow \mathbb{R}^+ \cup \{0\}$,

there exists an additive pricing function g with

$$\operatorname{Rev}_D(g) \ge \frac{1}{2\log(2n)} \operatorname{Rev}_D(f)$$

Key technical claim: Point-wise approximation implies revenue approximation.

Theorem 3: Given any det. pricing functions f and g such that for all subsets $S \subseteq [n]$, $\frac{1}{c}g(S) \leq f(S) \leq g(S)$. Then for any value distribution D, there exists a scaling factor $\alpha > 0$, such that

$$\operatorname{Rev}_D(\alpha g) \ge \frac{1}{2\log 2c} \operatorname{Rev}_D(f).$$

Theorem 3: Given any det. pricing functions *f* and *g* such that for all subsets $S \subseteq [n]$, $\frac{1}{c}g(S) \leq f(S) \leq g(S)$.

Then for any value distribution *D*, there exists a scaling factor $\alpha > 0$, such that

$$\operatorname{Rev}_D(\alpha g) \ge \frac{1}{2\log 2c} \operatorname{Rev}_D(f).$$

Restatement: Given any det. pricing functions f and g such that for all subsets $S \subseteq [n]$, $\frac{1}{c}g(S) \leq f(S) \leq g(S)$.

Then there exists a distribution over scaling factors $\alpha > 0$, such that for any valuation v, $\operatorname{Rev}_{v}(\alpha g) \ge \frac{1}{2 \log 2c} \operatorname{Rev}_{v}(f).$ Theorem 3: Given any det. pricing functions *f* and g such that for all subsets $S \subseteq [n]$, $\frac{1}{c}g(S) \leq f(S) \leq g(S)$.

Then there exists a distribution over scaling factors $\alpha > 0$, such that for any valuation v,

$$\operatorname{Rev}_{v}(\alpha g) \geq \frac{1}{2\log 2c} \operatorname{Rev}_{v}(f).$$

A scaling argument:

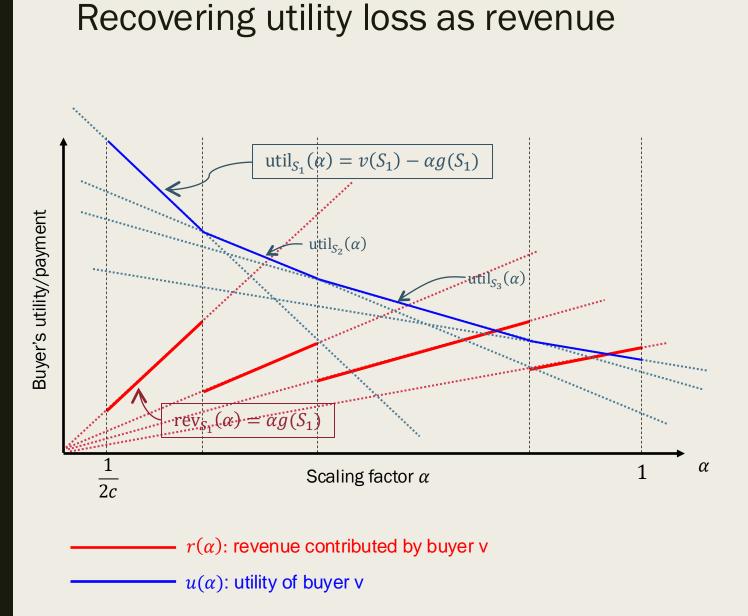
- Suppose a buyer purchases S^* under f. We want to recover $f(S^*)$.
- Consider varying α between $\frac{1}{2c}$ and 1. $\Rightarrow O(\log c)$ scales of interest.
- At one of these scales, we have $\frac{1}{2}f(S^*) \le \alpha g(S^*) \le f(S^*)$.

 \Rightarrow Buyer can afford S^* and seller makes revenue at least $\frac{1}{2}f(S^*)$.

Problem: Buyer may buy something other than S^* at a much lower price than $f(S^*)$.

Observation: the buyer gets high utility under pricing $\alpha g \Rightarrow$ can extract more revenue by raising prices. As we raise prices, the buyer loses utility; with total utility loss comparable to $f(S^*)$.

Our goal: recover this utility loss as revenue!



Define: $util_{S}(\alpha) = v(S) - \alpha g(S)$ $u(\alpha) = \max_{S} \{util_{S}(\alpha)\}$ $rev_{S}(\alpha) = \alpha g(S)$ $r(\alpha) = \alpha g(S_{\alpha})$

Observe:

$$\frac{d}{d\alpha}u(\alpha) = -r'(\alpha) = -\frac{1}{\alpha}r(\alpha)$$

Then, picking α with density $\propto 1/\alpha$ gives:

$$\begin{aligned} f_{\alpha}[r(\alpha)] &= \frac{1}{\log(2c)} \int \frac{r(\alpha)}{\alpha} \, d\alpha \\ &= \frac{1}{\log(2c)} \int -\frac{d}{d\alpha} u(\alpha) \, d\alpha \\ &= \frac{u(1/2c) - u(1)}{\log(2c)} \end{aligned}$$

Theorem 3: Given any det. pricing functions *f* and g such that for all subsets $S \subseteq [n]$, $\frac{1}{c}g(S) \leq f(S) \leq g(S)$.

Then there exists a distribution over scaling factors $\alpha > 0$, such that for any valuation v,

$$\operatorname{Rev}_{v}(\alpha g) \geq \frac{1}{2\log 2c} \operatorname{Rev}_{v}(f).$$

Outline:

Pick α with density $\propto 1/\alpha$.

• Then,
$$E_{\alpha}[r(\alpha)] = \frac{u(1/2c) - u(1)}{\log(2c)}$$

 $util_{S}(\alpha) = v(S) - \alpha g(S)$ $u(\alpha) = \max_{S} \{util_{S}(\alpha)\}$

 $u(1) = \max_{S} \{v(S) - g(S)\} \le \max_{S} \{v(S) - f(S)\} = v(S^*) - f(S^*)$

$$u(1/_{2c}) = \max_{S} \left\{ v(S) - \frac{1}{2c} g(S) \right\} \ge \max_{S} \left\{ v(S) - \frac{1}{2} f(S) \right\} \ge v(S^*) - \frac{1}{2} f(S^*)$$

• Putting everything together, $E_{\alpha}[r(\alpha)] \ge \frac{1}{2\log(2c)}f(S^*)$

Recap of approximation results

Theorem 1: For <u>any</u> value distribution D, Sybil-proof OPT $\leq O(\log n)$ SRev

Theorem 2: There exists a distribution *D* over additive valuations such that Subadditive Deterministic OPT $\ge \Omega(\log n)$ Revenue of any "succinct" mechanism

Theorem 3: For any two pricing functions, a pointwise *c*-approximation upon rescaling implies an $O(\log c)$ -approximation in revenue.

Summary

Main idea: instead of restricting the market, simplify the optimization by introducing "reasonable" constraints

- Buy-many constraint is reasonable; frequently satisfied
- Buy-many mechanisms exhibit many nice properties
- Buy-many mechanisms can be well-approximated via item pricing
- Some interesting open directions:
 - Multiple buyers: what does the buy-many constraint mean in limited supply settings?
 - Exact computation? The buy-many constraint is not a linear constraint.

Thank you!