
Exploiting Criticality to Reduce Bottlenecks in Distributed Uniprocessors

Behnam Robatmili† Sibi Govindan† Doug Burger‡ Stephen W. Keckler†§

beroy@cs.utexas.edu sibi@cs.utexas.edu dburger@microsoft.com skeckler@nvidia.com

†Department of Computer Science, The University of Texas at Austin
‡Microsoft Research

§Architecture Research Group, NVIDIA

Abstract

Composable multicore systems merge multiple indepen-
dent cores for running sequential single-threaded work-
loads. The performance scalability of these systems, how-
ever, is limited due to partitioning overheads. This paper
addresses two of the key performance scalability limita-
tions of composable multicore systems. We present a criti-
cal path analysis revealing that communication needed for
cross-core register value delivery and fetch stalls due to
misspeculation are the two worst bottlenecks that prevent
efficient scaling to a large number of fused cores. To allevi-
ate these bottlenecks, this paper proposes a fully distributed
framework to exploit criticality in these architectures at dif-
ferent granularities. A coordinator core exploits different
types of block-level communication criticality information
to fine-tune critical instructions at decode and register for-
ward pipeline stages of their executing cores. The frame-
work exploits the fetch criticality information at a coarser
granularity by reissuing all instructions in the blocks pre-
viously fetched into the merged cores. This general frame-
work reduces competing bottlenecks in a synergic manner
and achieves scalable performance/power efficiency for se-
quential programs when running across a large number of
cores.

1 Introduction

Due to limitations in clock frequency scaling, chip
multiprocessors (CMPs) have become popular to continue
scaling performance for explicitly parallel applications.
However, delivering performance improvements for single-
threaded applications using multicore systems remains a
challenging problem. Even for parallel applications, the
sequential part of the code can become a serious bottle-
neck, according to Amdahl’s law. Several proposals in re-
cent years have attempted to address these problems. An
asymmetric multicore (A-CMP) processor has a few high-
performance cores for running single-threaded code and

several light-weight cores for running parallel code [15].
A-CMPs can work efficiently for some types of workloads
but they are not flexible enough to adapt to a wide range of
workload characteristics. This lack of flexibility is due to
the fixed issue width and execution bandwidth of the large
cores allocated to sequential codes.

Another approach to address the need for adapting to
different workloads is using composable or dynamic mul-
ticores [9, 11]. In these architectures, independent cores
can be merged (fused) and share resources to run a single-
threaded application. When running a fully parallel applica-
tion, however, each core can run a single thread. Other con-
figurations are also possible. A recent analytical study [8]
shows that compared to other alternatives such as A-CMPs,
a performance-scalable composable system can achieve the
best power/performance trade-offs by leveraging various
degrees of parallelism expected in future workloads. How-
ever, the scalability of composable cores is still an open
question because they are subject to overheads caused by
partitioning the single-threaded code across the distributed
substrate. The correct fetch, execute, and commit oper-
ations of single-threaded applications must be guaranteed
across distributed cores. Register dependences between in-
structions distributed among the cores must be detected and
maintained in a scalable manner.

Prior composable designs have not scaled well as the
number of merged cores goes up. For example, TFlex [11]
uses an EDGE ISA and takes advantage of compiler-driven
block-atomic execution to break the fine-grained register
and control dependences and can merge up to 32 dual-issue
cores. Most SPEC INT benchmarks reach their maximum
performance when running on eight cores and observe a
slowdown when running on 16 or more cores. This paper
uses critical path analysis [5, 28] to systematically detect
and quantify the bottlenecks in such composable, multi-core
systems. This technique, which can be used to analyze any
architecture, indicates that the most critical bottleneck in
the TFlex substrate is the coarse-grained, inter-core register
communication, which occurs through shared forwarding
units. The second-worse bottleneck is a fetch bottleneck
caused by mispredictions. To alleviate these bottlenecks,

this paper evaluates a distributed framework called Dis-
tributed Block Criticality Analyzer (DBCA) that exploits
different types of criticality information collected at block
boundaries to implement low-overhead optimizations at fine
or coarse execution granularities. This general and flexi-
ble framework is implemented in a fully distributed fashion
across multiple cores. Such a framework can be used for
exploiting different types of criticality to optimize applica-
tions dynamically in future distributed systems. Although
the proposed framework is general, for the purpose of this
study, we focus on the following two types of criticality:

Communication Criticality: DBCA predicts critical
communication instructions at block boundaries using a
low-overhead criticality predictor located in a coordinator
core, which is not necessarily the same as the core execut-
ing those instructions. After these critical instructions are
predicted, they are selectively optimized according to their
criticality types at a pipeline-stage granularity in their ex-
ecuting core using two mechanisms. First, selective regis-
ter value bypassing sends values directly from each output-
critical instruction in one executing core to their consumer
instructions in other cores, thus bypassing shared register
forwarding units. Second, selective instruction merging dy-
namically reduces the length of dependence paths originat-
ing from input-critical register values communicated across
cores.

Fetch Criticality: To exploit fetch criticality, the co-
ordinator core maintains availability status of previously
fetched blocks and reissues those blocks if needed. Con-
sequently, this method saves latency and energy by short-
circuiting the fetch and decode operations of all instructions
in the reissued block.

The evaluation shows that DBCA reduces the effect of
the major bottlenecks simultaneously, thus resulting in a
major speedup while reducing power consumption when
running across a large number of cores. For instance, using
16 merged cores, DBCA improves performance and energy
efficiency (measured in inverse of energy delay squared) of
the system by 26% and 68%, respectively for SPEC integer
benchmarks.

2 Related Work

CoreFusion [9] is a composable microarchitecture in
which groups of two or four dual-issue, out-of-order cores
are dynamically fused to form a larger processor. When
fused, each core uses its private i-cache and branch predic-
tor to fetch instructions and predict branches. The informa-
tion about branch prediction decisions must be transferred
to a central unit called the fetch management unit to arrange
a consistent sequence of executing instructions. Fetched in-
structions are sent to another centralized unit for register re-
naming and finally to their executing cores. The use of the

physically shared register renaming and fetch units causes
bottlenecks and limits the aggregate issue width to eight.

Instead of resolving cross-core data/control dependences
dynamically, some approaches take advantage of compiler
support to extract instruction dependencies statically. In-
struction Level Distributed Processing [12] supports hierar-
chical register files consisting of many general purpose reg-
isters and a few accumulator registers. The hardware steers
each compiler-detected strand of instructions to a process-
ing element and its accumulator. The inter-strand depen-
dencies are handled through the general purpose registers.
Distributed dataflow-like architectures, including Explicit
Dataflow Graph Execution (EDGE) architectures can also
support a varying number of dynamic elements assigned to
a single thread. TRIPS uses the compiler to form pred-
icated blocks of dataflow instructions and to place each
instruction on a 16-ALU grid, where they issue dynami-
cally [23]. TFlex is a second generation EDGE design that
supports dynamic core aggregation [11], and is the underly-
ing distributed substrate used in this paper. Multiscalar [26]
and Thread-level Speculation [13] rely on discontinuous in-
struction windows by having the hardware spawn specula-
tive compiler-selected threads on multiple cores.

Fields and Bodik [5] propose a state-of-the-art criticality
predictor for superscalar processors. In this predictor, the
executing core (processor) detects and sends last-arriving
edges of microarchitectural events to the predictor as train-
ing data. The predictor uses a relatively high-overhead for-
ward token passing algorithm to detect long-lasting chains
of instructions using two parallel training and prediction
paths. The criticality predictor presented in this paper,
however, is customized for predicting critical register com-
munication instructions between code blocks where each
block is running on a separate core and uses a very low-
overhead majority vote algorithm [3]. Some methods selec-
tively steer critical instructions differently in the pipeline.
Seng et al. [24] propose a microarchitecture that steers the
predicted critical instructions to a high-performance/power
pipeline while steering the non-critical instructions towards
a low-performance/power pipeline. In a distributed proces-
sor with light-weight cores, providing multiple pipelines per
core could be costly. DBCA uses communication criticality
information to steer communication-critical instructions to-
wards different decode or register forward pipeline stages.
It also uses fetch criticality to short circuit the fetch and de-
code of instructions in reissued fetch-critical blocks.

Krishnan and Torrellas [14] propose a hardware-based
cross-core register communication in thread-level specula-
tion systems using a synchronizing scoreboard and a shared
bus. Restricting register bypassing to immediate successor
blocks, DBCA employs a selective critical value bypassing
that does not incur any of these overheads. To further reduce
the overhead, it also performs cross-core value bypassing

only for the predicted critical register output values.
Several static compiler optimizations such as dynamic

move elimination, register integration, and constant fold-
ing are inherently limited by the compile scope and ISA
restrictions. Runtime optimizations like RENO [19] have
proposed dynamic versions of those static optimizations.
These mechanisms applied at decode and register renaming
can potentially reduce the dependence height of program in-
struction chains. Applying this mechanism to all fetched in-
structions can cause a relatively high overhead. DBCA uses
a RENO-like decode-time dynamic instruction merging but
focuses that mechanism only on critical input instructions.

Trace processors exploit control independence by
reusing control-independent traces in the window follow-
ing misprediction events. The trace generation hardware
implements complex algorithms for detecting fine-grain,
intra-trace control-independence and coarse-grain, inter-
trace global re-convergent points [21, 17]. Taking advan-
tage of the compiler-generated predicated blocks, DBCA
employs a block reissue mechanism that does not use these
hardware components. Moreover, in this reissue mecha-
nism, each coordinator core only maintains the availability
status of its associated blocks, which amortizes the book-
keeping overhead across a large number of instructions.
Sankaralingam [22] et al. propose instruction revitalization
for TRIPS, in which the compiler adds a setup block to the
beginning of each loop to dynamically initiate reissuing of
the loop body. The block reissue method used by DBCA
leverages the same concept of block revitalization, but it is
not limited to loops, is fully dynamic, and requires no stati-
cally added setup code.

3 Background

TFlex is a composable lightweight processor that im-
plements an EDGE ISA supporting block-atomic execu-
tion [11]. Fetch and commit protocols operate on blocks
rather than individual instructions. Within a block, each in-
struction explicitly encodes its target instructions, and ex-
ecutes when its operands arrive. All branches with intra-
block trargets are converted to data dependences using pred-
ication. The compiler breaks the program into single-
entry, predicated blocks of instructions, similar to hyper-
blocks [16]. The ISA imposes several restrictions on blocks
to simplify the hardware. The maximum size of each block
is 128 instructions. Each block can contain up to 32 register
reads, 32 register writes, and 32 load or store instructions.
The compiler currently achieves about 64 dynamic instruc-
tions per block. Figure 1 and Table 1 illustrate the various
microarchitectural components of a TFlex core [11]. Each
TFlex core has the minimum required resources for running
a single block, which include a 128-entry RAM-based in-
struction queue, a data cache bank, a register file, a branch

32-Core TFlex Array

One TFlex Core
Block

control

8-Kbit
next-block
predictor

Memory
network

in/out

8KB 2-way
L1 D-cache

44-entry
load/store

queue

128-entry
architectural
register file
2R, 1W port

Register
forwarding

logic & queues

Operand
buffer

128x64b

Se
le

ct
 lo

g
ic

Operand
buffer

128x64b
128-entry

instruction
window

Operand
network
in queue

Operand
network

out queue

Control networks

int
ALU

4KB block
header cache

4KB
direct-mapped

L1 I-cache

fp
ALU

Figure 1. Microarchitectural components of
one core of a 32-core TFlex Composable
Light-weight Processor.

prediction table, and an instruction (block) cache bank.
When N cores are merged, they can run N blocks simul-

taneously, of which one block is non-speculative and the
rest are speculative. As each block is mapped to the instruc-
tion queue of one core, all instructions inside that block ex-
ecute and communicate within the core [20]. In the merged
mode, the register banks, instruction cache banks, and data
cache banks of the cores are shared among the cores and
are address interleaved. For example, each core contains a
data cache and the low-order bits of each memory address
determines the core containing the cache bank associated
with that memory address [11]. In the merged mode, a reg-
ister forwarding unit and a load store queue unit on each
core are in charge of holding speculative register and mem-
ory values produced by the running blocks. Additionally,
the register forwarding unit resolves dependences and for-
wards register values between blocks. Therefore, a regis-
ter value produced by a block needs to be first sent to its
home core so that its consuming blocks can be identified
and it can get forwarded to the cores running those blocks.
Consequently, there is no centralized renaming mechanism
for inter-block register communication. Additionally, dis-
tributed protocols implement next block prediction, fetch,
execute, commit, and misprediction recovery using no cen-
tralized logic, which makes this architecture able to scale to
32 cores, in the best case, supporting a single thread. The
block-level prediction, fetch, commit, misprediction recov-
ery overheads are amortized across all instructions in each
block.

4 Detecting Bottlenecks using Critical Path
Analysis

This study addresses the question of where the microar-
chitectural bottlenecks lie as many cores are merged to-
gether to accelerate a single thread. Critical path anal-

Table 1. Single Core TFlex Microarchitecture Parameters [11]
Parameter Configuration
Instruction Sup-
ply

Partitioned 8KB I-cache (1-cycle hit); Local/Gshare Tournament predictor (8K+256 bits, 3 cycle latency) with speculative updates; Num.
entries: Local: 64(L1) + 128(L2), Global: 512, Choice: 512, RAS: 16, Call Target Buffer: 16, Branch Target Buffer: 128, Btype: 256.

Execution Out-of-order execution, RAM structured 128-entry issue window, dual-issue (up to 2 INT and 1 FP).
Data Supply Partitioned 8KB D-cache (2-cycle hit, 2-way set-associative, 1-read port and 1-write port); 44-entry LSQ bank; 4MB decoupled S-NUCA L2

cache [10] (8-way set-associative, LRU-replacement); L2-hit latency varies from 5 cycles to 27 cycles depending on memory address; average
(unloaded) main memory latency is 150 cycles.

ysis [5, 28] is an effective way to study the interactions
among microarchitectural events and to identify the bottle-
necks in a processor system. The simulation-based critical
path analysis used in [5] generates and processes the pro-
gram dependence graph. This dependence graph is a di-
rected acyclic graph, where nodes represent the various mi-
croarchitectural events and edges represent data or microar-
chitectural dependences among these events. Microarchi-
tectural dependences are dictated by the characteristics of
the microarchitectural components of the target processor
such as branch predictor, fetch, issue, commit and memory
units. In the critical path analysis, events (nodes) are tagged
by their corresponding resource(s). Summing the delays as-
sociated with all nodes with a same tag, this analysis can
estimate the critical path contribution of the component as-
sociated with that tag. The system simulator [11] outputs a
trace of the various microarchitectural events that occur dur-
ing the execution of a program. Each event in this trace in-
cludes all of the data needed to be added to the dependence
graph including the cycle of the event occurrence and the
block associated with the event. The critical path tool then
constructs the program dependence graph using the trace
and computes the program critical path according to the al-
gorithm in [18]. The tool reports the critical path breakdown
which includes the contribution of each microarchitectural
component to the critical path. Although the tool reports
several critical path components, most of the critical cycles
are spent in one of the following components:

(1) branch misprediction: branch misprediction over-
head. (2) load violation: load dependence misspeculation
overhead. (3) data misses: the time spent on data misses.
(4) instruction execution: the execution time spent in
ALUs. (5) network: the time spent on operand communi-
cation across the network. (6) fetch stalls: the time waiting
for a fetch-critical block to be fetched. (7) block commit:
the time spent when a block has finished executing all its
instructions and waits for the previous blocks to commit be-
fore it can commit. Other components reported by this tool
include instruction fetch, write forward and store forward.
Write forward and store forward are the times spent in reg-
ister files or load/store queues when a register or memory
value is forwarded between speculative blocks, respectively.

Figure 2 reports the critical path breakdown for SPEC-
INT and SPEC-FP benchmarks. Different stacked bars rep-
resent different system configurations. Each system config-

uration is associated with a fixed number of merged cores.
Each segment of the critical path is normalized against the
corresponding segment length in the 1-core configuration.
Therefore, the total height of the stack for each configu-
ration represents the average execution time in that con-
figuration normalized against the execution time in the 1-
core configuration. The dotted lines in the figure highlight
the major components in the critical path. For INT bench-
marks, when running on only one core, the dominant bot-
tlenecks in the system are execution bandwidth, block com-
mit, and data misses. As more cores are merged, execu-
tion bandwidth, block commit bandwidth, and data cache
capacity/bandwidth are increased. Consequently, execu-
tion, block commit and data misses become less critical.
This trend continues for the configurations with core counts
smaller than eight. When using eight or more cores, data
misses, instruction execution, on-chip inter-core network
and fetch stalls are the major contributors of the critical
path. Among these factors, the contributions of the on-chip
network and fetch stalls (the lowest two segments in each
configuration shown) increase as more cores are merged.
The following two components can be considered as the
system’s main bottlenecks:

On-chip Network: The on-chip network is used for
communication between instructions running on different
merged cores. Our results show that most of the network
traffic is caused by register communication between dis-
tributed instructions. A producer instruction sends a new
value of an architectural register to the home core of that
register. Resolving dependences, the register forwarding
unit of that core then forwards the value to its consumer
core(s). When the core count increases, the network dis-
tance increases and so does the average inter-block commu-
nication delay.

Fetch: When a large number of cores are merged, the
system constructs a large window of speculative instruc-
tions. Consequently fetch stalls caused by misspeculation
flushes are likely to end up on the critical path and become
a performance bottleneck. This phenomenon explains the
increase in fetch stall segments of the critical path when
merging more cores.

If these bottlenecks were eliminated many of the critical
cycles would shift to execution. FP benchmarks scale better
than INT benchmarks and on chip network is not as critical
for them but fetch stalls are still on their critical path.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

Number of cores

brmispred

loadviolation

instfetch

writefwd

regread

datamiss

storefwd

instexecute

blockcommit

blockfetch

icachemiss

oprnetwork

fetchstall

(a) INT

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Number of cores

brmispred
loadviolation
instfetch
writefwd
regread
datamiss
storefwd
instexecute
blockcommit
blockfetch
icachemiss
oprnetwork
fetchstall

(b) FP

Figure 2. Critical path breakdown of SPEC
benchmarks for different microarchitectural
components.

5 Distributed Block Criticality Analyzer

This section explains a distributed block criticality an-
alyzer (DBCA) that exploits criticality information to op-
timize critical instructions or code blocks based on their
criticality characteristics. In this paper, DBCA is restricted
to cross-core communication and fetch criticality. How-
ever, it can be extended to include other types of criticality
such as memory and execution criticality. Figure 3 high-
lights the components added to each TFlex core by this an-
alyzer. To minimize the communication overhead, DBCA
piggybacks on the next block prediction distributed proto-
col. Each block is assigned a fixed core as its coordinator
core, which is selected based on a few low-order bits of the
PC of the first instruction in the block (block PC). The coor-
dinator core contains next block prediction tables for all of
the blocks assigned to it. When a new block is requested, its
coordinator core is signaled by the coordinator of the previ-
ous block to allocate an idle core (a core not executing any
block) to execute the new block and predict the next block
and then signal the coordinator core of the predicted block.

DBCA extends this protocol by augmenting the coordi-

Criticality related components and entry format
in block status table indexed by block PC

Requested block PC

Predicted critical IO insts
pred_input  Cri,cality Predictor 

Block Reissue Engine 

i_counter 

available_core_bitvector 

pred_output  o_counter  Requested block PC

Selected executing core

Next block predic/on table  Next Block Predictor 
Signal next block coordinator

Signal from prev coordinator

(a) Tables and components added for coordinating.

Fetch 
Decode 

DecodeMerg 

Issue  Execute 
RegWrite 

RegWriteBypass 

Commit 

criticality type

ou
tp

ut

cr
iti

ca
l

in
pu

t
cr

iti
ca

l

block reissue

(b) Augmented instruction pipeline.

Figure 3. Components used in the distributed
block criticality analyzer to reduce bottle-
necks.

nator core with a table called the block status information
table shown in Figure 3(a). This table contains different
criticality information of blocks assigned to this coordina-
tor core and is maintained by two hardware components
located on the coordinator core. A communication crit-
icality predictor predicts both the communication-critical
instructions and their criticality type and a block reissue
component maintains the information required for reissuing
the non-running instances of fetch-critical blocks. When a
block is allocated, the corresponding coordinator core ac-
cesses these hardware components, extracts and sends the
criticality information of that block to the selected execut-
ing core. The executing core uses that information to opti-
mize the pipeline of critical instructions according to their
criticality types. Communication critical instructions are
treated specially in a fine-grained manner in the pipeline
according to their predicted criticality type. Output-critical
instructions go through a value bypassing stage which sends
the produced critical register values directly from their pro-
ducer cores to their consumer cores, thus bypassing the
shared register forwarding units. Input-critical instructions
go through a decode time dynamic instruction merging
stage that reduces the height of their dependent instruction
chains. For reissued fetch-critical blocks, all instructions
skip their fetch and decode stages in a coarse-grained man-
ner.

Note that in this distributed framework, coordinator and
executing cores do not have to be physically separated and a
core executing a block can simultaneously act as the coordi-
nator core of other blocks. Table 2 shows coordination and
execution orders in a system running 4 iterations of a loop

Table 2. An example of mapping 4 loop iter-
ations each with 2 blocks A and B, across 8
cores (C1 to C7).

Fetch order
Blockiteration A1 B1 A2 B2 A3 B3 A4 B4

Coordinator cores C0 C1 C0 C1 C0 C1 C0 C1

Executing cores C0 C1 C2 C3 C4 C5 C6 C7

across 8 cores. Each iteration has 2 blocks A and B (block
PCs) assigned to coordinator cores C0 and C1, respectively.
If all cores are idle at first, the coordinator cores select idle
cores in a round-robin fashion for running the iterations.

5.1 Communication Criticality Predictor

Predicting critical communication instructions of each
block can be done using a state-of-the-art criticality pre-
dictor [5] explained in Section 2. Although proven effec-
tive [5], using such a criticality predictor in a distributed
multicore system can cause high hardware complexity,
communication, and storage overheads. In this subsection,
we describe a low-overhead communication criticality pre-
dictor used by DBCA. For each block, block inputs refer to
the register operands used by instructions in that block, but
produced by other blocks. Block outputs, on the other hand,
refer to the register operands produced by the instructions
in that block but used by other blocks in the window. As
long as all inputs of a block have not arrived from previous
blocks, some instructions in that block remain uncompleted.
Finally, the block cannot commit until all its outputs are sent
to other blocks. Therefore, late communication edges (last-
departing register outputs produced by a block before the
block commits or the last-arriving register inputs received
by a block) are likely to be on the critical path. To verify
this, we use the critical path analysis discussed in Section 4
to find the breakdown of the critical communication edges.
In this breakdown, the critical communication edges are di-
vided into four categories: last-departing outputs, non-last-
departing outputs, last-arriving inputs and non-last-arriving
inputs. Figure 4 presents this breakdown for the SPEC2K
benchmarks running across 16 merged cores (a few bench-
marks are missing due to critical path tool complications).
Note that the critical output and input edges are the edges
on the critical path from a producing core to the correspond-
ing forwarding unit on the home core of the corresponding
register and from the forwarding unit to a consuming core,
respectively. For INT benchmarks, 70% of all register crit-
ical inputs and outputs are late communication edges (the
sum of the first and third segments from below in each bar).
For FP benchmarks, late communication edges may be less
critical because only 52% of critical register inputs and out-
put are late.

Given the high criticality of the late communication

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra>
y 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

av
e 

last‐deparFng out  non‐last‐deparFng out  last‐arriving in  non‐last‐arriving in 

Type of communicaFon edges 

Pe
rc
en

t o
f a
ll 
cr
iF
ca
l 

co
m
m
un

ic
aF

on
 e
dg
es
 

Figure 4. Critical-communication edges
breakdown for SPEC benchmarks.

edges, to reduce overheads, the predictor used by DBCA
predicts late communication edges instead of critical com-
munication edges. We explain the algorithm for predict-
ing the last-arriving register inputs of each block; pre-
dicting last-departing outputs is similar. The coordinator
core stores late input predictions for its assigned blocks
(pred input in Figure 3(a)). For critical register inputs, the
actual predicted value is the register number associated with
the last-arriving register input of the block. When a block
is allocated and mapped to a core, its coordinating core pre-
dicts the last-arriving register input of that block and sends
it to the core executing that block. When the block ends
execution, its executing core appends the last-arrived input
observed during execution to a dealloc message and sends
it to the coordinator core along with other data needed for
deallocation. The coordinator core updates the prediction
entry of that block using Boyer and Moore’s majority vote
algorithm [3]. Each entry in the table includes the predicted
last-arriving input for a block and a majority vote counter
(i counter in Figure 3(a)). When the predictor updates the
entry, if the new last-arriving input is the same as the pre-
dicted one, the majority counter is incremented. Otherwise,
the counter is decremented but the predicted input does not
change. If the counter reaches zero, the predicted input will
be updated by the current last-arriving input. To reduce the
effect of the stale data in the prediction table, the predic-
tor uses an epoch-based algorithm. This algorithm uses two
prediction entries per block, each with an input number and
a majority counter. During each fixed epoch, the algorithm
uses one of the two entries for training and the other en-
try that was trained in the previous epoch, for predicting.
When an epoch ends, the two entries are switched. Our ac-
curacy evaluation of this predictor shows that when running
the SPEC benchmarks across 16 cores, late register inputs
and outputs of blocks can be predicted correctly 80% of the
time.

5.2 Selective Register Value Bypassing

Before we discuss the register bypassing used by exe-
cuting cores for critical instructions, we briefly discuss the

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

> 3 

3 

2 

1 

block 
distance 

%
 o
f i
nt
er
‐c
or
e 
re
gi
st
er
 d
at
a 
tr
an
sf
er
s 

Figure 5. Block distances between register
data producer and consumer blocks running
on 16 merged cores.

the original register forwarding mechanism used by TFlex.
The original mechanism uses distributed forwarding units
in participating cores to resolve inter-block instruction reg-
ister dependences. As each speculative block is allocated, it
allocates an entry for each of its output registers in the for-
warding unit of the home core of that register. Also, it sends
its register read requests to corresponding home cores of its
input registers. When a block produces a register output, the
core running the block sends the output value to the home
core of the corresponding register. In the home core, the
register forwarding unit accesses the forwarding entry allo-
cated to that register to look up the destination cores and in-
structions before sending the value. In this mechanism, the
inter-block register dependences are resolved at the home
core. This forwarding mechanism is indirect because it does
not provide direct communication between source and des-
tination cores. The communication delay associated with
this forwarding increases as the network grows larger. An
alternative communication model uses direct communica-
tion between different blocks. In this model, register de-
pendences are resolved in the producer cores and each pro-
ducer instruction in one core sends it output directly to the
consumer instruction(s) in other cores. Such a mechanism
requires that each core maintain a synchronizing scoreboard
table [14] that tracks the status of all shared registers. To
keep the tables updated and coherent, cores need to be con-
nected though a shared broadcast bus, which can reduce
scalability as high numbers of cores are used.

As shown in Figure 3(b), DBCA uses a low-overhead,
direct communication mechanism called value bypassing
for critical output instructions. However, other instructions
use the original indirect forwarding mechanism. We re-
strict register value forwarding to only immediate succes-
sive speculative blocks. Figure 5 shows block forward-
ing distances between producer and consumer blocks for
the SPEC benchmarks running on 16 cores. The block
forwarding distance in this figure is the number of specu-
lative blocks between a producer block and its consumer
blocks. On average, 74% of the value forwarding happens
between two subsequent speculative blocks. Considering
the aforementioned simplifications, the bypass mechanism

for critical registers no longer needs to track the status of all
registers using synchronizing scoreboards. When the last-
departing register of a block is predicted, the core executing
the block sets a flag if the subsequent block reads that regis-
ter. When the last-departing value is produced, the producer
core sends the value directly to the core executing the next
speculative block if the flag is set. The destination core for-
wards the value to its instructions waiting for the that regis-
ter value. The value also needs to be sent to the home core
of that register so that non-critical consumer cores can also
receive it through the original forwarding mechanism.

5.3 Selective Instruction Merging

As shown in Figure 3(b), during decode, the executing
cores use an instruction merging mechanism. This mech-
anism works like RENO [19] in general but is only ap-
plied to the instructions consuming a predicted critical in-
put. This mechanism tracks instructions consuming the pre-
dicted last-arriving register and removes the move and add-
immediate instructions that generate the address for a load
or store instruction. The mechanism merges the immedi-
ate values into the offset operand of the destination load or
store instruction and tags the load or store instruction as a
new immediate consumer of the critical register input. The
tracking process ends after detecting any non-copy or a non-
add-immediate instructions in the dependence chain of the
critical register. During execution, when the value of the
predicted critical register is received, it will be directly sent
(broadcast) to all its consumer instructions detected during
decode. Figure 6(a) shows a part of the instruction depen-
dence graph in a block. For simplicity, the figure only shows
the dependences related to address calculation for memory
instructions and data-related dependences are not shown.
Register R10 is used by two stores, which are i3 and i8, and
two load instructions, which are i5 and i7, as their base ad-
dress. The base address is incremented by two immediate
values using add-immediate instructions before it reaches
i7 and i8. There are two copy (or move) instructions, which
are i1 and i2, starting the base address distribution network.
Figure 6(b) shows the instruction dependence graph of the
same code after the instruction merging mechanism is ap-
plied at decode. The copy and add-immediate instructions
are eliminated and their immediate values are added to the
offsets of their consuming memory instructions to form new
instructions i7’ and i8’. Finally, all of the memory instruc-
tions are tagged as consumers of the the critical input reg-
ister R10. During execution, once the value of R10 arrives,
the value is sent (broadcast) as the base address to all of the
tagged memory instructions which are i3, i5, i7’ and i8’.

i1

i3 i4

i2

i6

i7 i8

mov 

addi 118 

ld [240] 

st [110] 

st [110] 

mov 

addi 200 

Read 
R10 

ld [200] i5

(a) Before merging

ld [358] st [110]  st [310] i3 i7’ i8’

Read 
R10 

ld [200] i5

(b) After merging

Figure 6. An instruction dependence graph
before and after instruction merging.

5.4 Block Reissue

The block reissue component in the framework tracks
and reissues instances of blocks previously-executed in the
distributed instruction window. Different from trace proces-
sors [21, 17], this block reissue mechanism does not rely on
complex hardware for tracking and combining the blocks in
flight and finding global re-convergent points. Instead, it re-
lies on the compiler to detect re-convergent points and cre-
ate large predicated blocks by combining basic blocks. Nor-
mally all instructions in each block remain in the instruction
window of the executing core until the block commits or is
flushed. Distributed instruction queues on the participat-
ing cores can be used as intermediate instruction storage.
Shortcutting critical fetch and decode operations as shown
in Figure 3(b), the mechanism achieves energy savings. For
example, when the first iteration of the loop in Table 2 com-
mits, A1 and B1 available instances of blocks A and B in
the instruction queue can be immediately reissued to run it-
eration 5 on cores C0 and C1.

To support block reissue, a coordinator core stores a
bit vector (available cores bitvector in Figure 3(a)) for
each block assigned to it, which represents the idle cores
in which a non-running copy of the block is available.
When a block is allocated/committed, its coordinator core
resets/sets the bit corresponding to the executing core of
that block. When a block is requested, its coordinator core
searches the corresponding bit vector to find a core with
a non-running instance of the block, reissues that block,
and resets the corresponding bit in its bit vector. If the
block is not available in any of the idle cores, the executing
core selects an idle core to fetch the block from the i-cache
and execute it. In this case, the selected core deallocates

its previously-executed block and informs the coordinator
core of that block to update the bit vector of the deallocated
block. To increase the hit rate of the block reissue mecha-
nism, we can use more than one instruction queue in each
core. For instance, when using two instruction queues per
core, each core can store up to two decoded blocks. At a
given time, however, each core can only execute one of its
two stored blocks and the other instruction queue is used as
an instruction storage.

6 Results

This section evaluates individual and aggregated mech-
anisms used by the distributed block criticality analyzer.
We modified a cycle accurate TFlex simulator [11] to add
the support for DBCA. We accurately model the distributed
protocols and all the components used by DBCA (see Fig-
ure 3). Table 1 shows the microarchitectural parameters for
each TFlex core used in our experiments. Each TFlex core
is a dual-issue, out-of-order core with a 128-entry instruc-
tion window for executing one block. At the same time, it
acts as the coordinator core for a set of blocks. We also aug-
ment the original TFlex power models to accurately model
the energy consumed/saved by the components in DBCA.
The original TFlex power models are developed similar to
the Wattch power models [4], but are constructed using val-
idated TRIPS power models [6]. Due to space limitations,
we refer the reader to the original TFlex paper [11] for a
discussion of the power modeling methodology. We use
the CACTI [27] tool to augment the original power model
with accurate models of the hardware tables and compo-
nents highlighted in Figure 3. We use eight integer and eight
floating point the SPEC2K [1] benchmarks using the refer-
ence (large) dataset simulated with single SimPoints, ver-
sion 3.2 [25]. Except for scalability charts, we report 16-
core configuration results because the maximum improve-
ments are observed in that configuration. A complete cross-
platform comparison is beyond the scope of this paper, but
is available in [7].

6.1 Individual Components

Figure 7(a) shows the speedups achieved using selective
register value bypassing for the SPEC benchmarks when us-
ing 16 merged cores. To control the number of forwarded
critical values per block, we use a parameter called critical-
ity factor. This factor determines the number of forwarded
last-departing register values per block. For instance, us-
ing a criticality factor of three means that every block by-
passes its three last-departing register outputs to the core
running the subsequent speculative block. In this graph,
bypass cfactor 1 to 3 represent the selective bypass runs

with criticality factors of 1 to 3. Dir reg represents a high-
overhead register forwarding mechanism in which all pro-
ducers forward their values directly to their consumers in all
consecutive blocks. Dir reg can be used as an upper limit
for measuring value bypassing speedups. For the SPEC INT
benchmarks, the maximum speedup over the original by-
passing model on average is 8%, which is achieved using
dir reg. Only bypassing one last-departing register output
of each block will achieve about 6% speedup on average.
This speedup increases to more than 7% as we raise the
criticality bypass factor to 3. For FP benchmarks, the max-
imum speedup is about 8%, while using criticality factor
of 1 results in 3% speedup. Raising the criticality factor
to 3 increases the speedup to 6%. As shown in Figure 4,
the last-departing register values are not as critical for FP
benchmarks as they are for INT benchmarks.

Figure 7(b) illustrates the speedups achieved using se-
lective critical instruction merging for the SPEC bench-
marks when merging 16 cores. The criticality factor in
this figure determines the number of last-arriving registers
per block, used by the merging algorithm during the de-
code stage. Merge cfactor 1 to 3 represent the selective in-
struction merging mechanism with criticality factors of 1
to 3. To provide an upper limit for measuring speedups,
full merge represents a hypothetical, aggressive instruction
merging mechanism in which all copy and add-immediate
instructions following each input register are merged into
their destinations. For the SPEC INT benchmarks, the max-
imum speedup is more than 12%, which is achieved using
full merge. Applying instruction merging only to the most
critical register input of each block (merge cf 1) achieves
more than a 7% speedup over the baseline which does not
use merging. The speedup increases to 11% as we change
the criticality factor from 1 to 3. In contrast, for FP bench-
marks, the speedup changes from 4% to 8% when varying
the criticality factor from 1 to 3. This difference between
the INT and FP benchmarks again indicates the fact that
last-arriving inputs are less critical for FP benchmarks as
shown in Figure 4.

For the block reissue experiments, we implement an
LRU block replacement policy and a first-match search on
the available cores bitvector bit vector of each allocated
block. More complex search and replacement policies can
improve reissue the hit rate of fetch-critical blocks. Fig-
ure 7(c) reports the 16-core execution times normalized
against a 16-core baseline which does not use block reissue.
For some benchmarks, we observe a slowdown when apply-
ing block reissue. For these benchmarks, block reissue has
a negative effect on the accuracy of the data dependence
predictor. Ignoring those benchmarks, average speedups
across INT and FP benchmarks for different block storage
size per core are very similar. When storing one block in
the instruction queue of each core, the average reissue hit

1.00 

1.04 

1.08 

1.12 

1.16 

1.20 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

bypass cfactor1  bypass cfactor 1  bypass cfactor 3  dir reg 

Sp
ee
du

p 
ov
er
 1
6‐
co
re
 b
as
el
in
e 

Register forwarding mechanisms 

(a) Value bypassing.

1.00 

1.04 

1.08 

1.12 

1.16 

1.20 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

merge cfactor 1  merge cfactor 2  merge cfactor 3  full merge 
InstrucFon merging mechanisms 

Sp
ee
du

p 
ov
er
 1
6‐
co
re
 b
as
el
in
e 

(b) Dynamic instruction merging.

0.96 

1.00 

1.04 

1.08 

1.12 

1.16 

1.20 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

1  2  4  8 

IQ block capacity per core 

Sp
ee
du

p 
ov
er
 1
6‐
co
re
 b
as
el
in
e 

(c) Block reissue with varying instruction queue block capacity per core.

0.95 

1.00 

1.05 

1.10 

1.15 

1.20 

1.25 

1.30 

1.35 

1.40 

16
8.w

up
wi
se
 

17
1.s
wi
m 

17
2.m

gr
id 

17
7.m

es
a 

17
9.a
rt 

18
3.e
qu
ak
e 

18
8.a
mm

p 

30
1.a
ps
i 

16
4.g
zip
 

17
5.v
pr
 

18
1.m

cf 

18
6.c
ra?
y 

19
7.p
ar
se
r 

25
3.p
er
lbm

k 

25
6.b
zip
2 

30
0.t
wo
lf 

fp
 av
e 

int
 av
e 

 av
e 

bypass  merge  breissue  aggregate cf1 

Sp
ee
du

p 
ag
ai
ns
t 1

6‐
co
re
 b
as
el
in
e 
 

OpHmizaHon mechanisms 

(d) Aggregated bypassing, merging and block reissue.

Figure 7. 16-core speedups achieved using
individual and by aggregated components.

rate is about 50%, which translates to decreasing the en-
ergy consumed by fetch and decode by half. The issue hit
rate increases to 60%, 67% and 75% when using instruction
queue block capacity of 2, 4 and 8, respectively. The reis-
sued blocks come from different sources on the INT and FP
benchmarks. Table 3 includes the breakdown of reissued
blocks for the runs with instruction queue block capacity
of two. For INT benchmarks, the majority of the reissued
blocks are reissued after block misprediction events. For FP

Table 3. Percentage breakdown of reissued
blocks with IQ block capacity of two.

Benchmarks After branch After load Single others
mispredictions violations block loops

INT 54.4% 20.0% 1.9% 23.7%
FP 26.0% 9.8% 11.9% 52.3%

benchmarks, large loops and other repetitive code patterns
comprises the majority of reissued blocks.

6.2 Aggregated Distributed Block Criti-
cality Analyzer

Each of the three mechanisms evaluated so far is used to
shorten a segment of the critical path reported in Figure 2(a)
and when applied alone, produces a mild performance im-
provement for INT benchmarks. This could be due to com-
peting bottlenecks in the system. For instance, reissuing a
fetch-critical block helps performance as long as that block
has not become communication critical. Also, running se-
lective bypassing and merging on a communication-critical
block will improve performance as long as the block has
not become fetch-critical. Figure 2(a) shows that the ma-
jor bottlenecks such as inter-core communication and fetch
bottleneck grow as the number of merged cores goes up.
Consequently, when only the effect of one of them is re-
duced, the other bottleneck is more exposed on the critical
path and prevents high speedups. Figure 7(d) shows the
16-core speedups for each optimization mechanism when
applied alone and when these mechanisms are aggregated.
For selective bypassing and merging reported in this graph,
the criticality factor is set to 1. For block reissue, each
core can hold two blocks in its instruction queue, one of
which is executing at a time. For INT benchmarks, each
individual mechanism achieves an speedup of about 5% to
7% while when aggregated, these mechanisms achieve an
average speedup of 22% over the baseline that does not use
DBCA. By using criticality factor of two and three, which
is not shown in this graph, the average speedup increases to
24% and 26%, respectively.

This significant speedup is caused by simultaneous re-
duction of the major system bottlenecks. Figure 8 shows
the breakdown of the critical path for INT benchmarks be-
fore and after using DBCA. This figure only includes con-
figurations with more than four merged cores and uses a
1-core configuration as its baseline. The stacked bars la-
beled base and aggreg cf1 show the criticality breakdown
before and after applying DBCA, respectively. In this fig-
ure, the optimizations employed by DBCA use criticality
factor of one. The communication and fetch stall segments
of the critical path (the two lowest segments of each stack)
are significantly reduced after applying DBCA. This reduc-

 0

 0.2

 0.4

 0.6

 0.8

 1

1base 8base 8aggreg_cf1 16base 16aggreg_cf1

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

Number of cores

brmispred

loadviolation

instfetch

writefwd

regread

datamiss

storefwd

instexecute

blockcommit

blockfetch

icachemiss

oprnetwork

fetchstall

Figure 8. Critical path breakdown of INT
benchmarks for different microarchitectural
components for the baseline (base) and af-
ter using the distributed block criticality ana-
lyzer (aggreg cf1).

tion can explain the large speedup achieved by aggregating
mechanisms. The new critical path comprises mostly in-
struction execution and data cache misses. This criticality
pattern is nearly ideal for a system with distributed parti-
tions of a large instruction window. According to this graph,
most useful cycles of a program execution are now spent
on instruction execution and data misses. A more detailed
evaluation of the critical path indicates the execution is now
limited only by program data dependencies, including intra-
block predicates and next block prediction accuracy. There-
fore, even further performance can be squeezed by extend-
ing DBCA for execution criticality and branches, which is
ongoing research.

6.3 Performance/Energy Scalability

Figure 9 illustrates the average system performance
when varying the number of merged cores and optimiza-
tion mechanisms. These numbers are speedups over single
dual-issue cores for the SPEC INT and FP benchmarks. The
different charts in the figure are as follows. baseline: This
original TFlex system does not use DBCA and its compo-
nents. bypass: In this mode, selective critical bypassing is
enabled with criticality factor of one. bypass merge: This
mode uses selective bypassing and merging with criticality
factor of one. aggregate cf 1: In this mode, selective by-
passing and merging are enabled with criticality factor of
one and block reissue is enabled with two blocks in each
core’s instruction queue. aggregate cf 3: The same as ag-
gregate cf 1 except that it uses a criticality factor of 3.

As expected, the 2-core and 4-core speedups are rela-
tively small given the short inter-communication distances
and the number of blocks predicted. However when apply-
ing the proposed mechanisms using the criticality factor of
one, the 8-core average speedup improves from 2.25 to 2.7

Table 4. 16-core percentage energy costs of
different optimization mechanisms.

Register Dynamic Block reissue Block reissue Total
bypass merging lookup and saved fetch & saved

replacement decode energy
INT 0.6% 1.6% 0.7% -9.3% -6.4%
FP 0.3% 1.0% 0.4% -6.8% -5.1%

for INT benchmarks. The average speedup for the 16-core
runs improves from 2.2 to 2.8. In addition to improving
overall system performance, DBCA also improves the scal-
ability of the system. For instance, for INT benchmarks, the
8-core configuration runs outperform the 16-core configura-
tion runs when none of the optimizations is active. Once all
optimizations are active, the 16-core runs outperforms the
8-core runs. FP benchmarks illustrate better overall scala-
bility. Most FP benchmarks are compute and data intensive
and will take advantage of duplicated processing elements
and data cache banks as more cores are merged.

We also study the energy overhead and efficiency of
DBCA. The energy results assume process technology of
65nm, supply voltage of 1.0 V, and a core frequency of 1

1 

1.5 

2 

2.5 

3 

1  2  4  8  16 

aggregate cf 3 

aggregate cf 1 

bypass_merge 

bypass 

baseline 

# of cores 

Sp
ee
du

p 
ov
er
 s
in
gl
e 
du

al
‐is
su
e 
co
re
s 

(a) SPEC INT

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

1  2  4  8  16 

aggregate cf 3 

aggregate cf 1 

bypass_merge 

bypass 

baseline 

# of cores 

Sp
ee
du

p 
ov
er
 s
in
gl
e 
du

al
‐is
su
e 
co
re
s 

(b) SPEC FP

Figure 9. Average speedup over single core
for the SPEC benchmarks with varying num-
bers of merged cores and optimizations.

GHz. Table 4 shows the energy consumption or savings of
each of the proposed mechanism normalized against total
energy dissipated in the processor. For INT benchmarks,
the three mechanisms raise the processor’s consumed en-
ergy by 2.9%. Block reissue, however, reduces total en-
ergy by 9.3% by shortcutting fetch and decode operations,
resulting in total energy savings of 6.4%. For FP bench-
marks, this number is 5.1%. The 16-core configuration wit-
nesses highest performance/energy improvement measured
in the inverse of energy-delay2 of about 68%. For FP bench-
marks, the 16-core configuration also shows the highest per-
formance/energy improvement of about 36%.

7 Conclusions

This paper addresses several key performance scalability
limitations of distributed, composable multicore systems.
The critical-path based analysis shows that the commu-
nication needed for register dependence resolution among
distributed instructions and supporting a consistent fetch
stream are the two major bottlenecks that occur when merg-
ing high numbers of cores. To alleviate these bottlenecks,
this study proposes a flexible framework for exploiting dif-
ferent types of instruction criticality in a distributed dy-
namic multicore system. This framework called distributed
block criticality analyzer or DBCA, augments each core
with several very low-complexity distributed components
and implements a distributed protocol to optimize different
types of critical instructions at different levels of pipeline
across cores. Critical communication instructions are pre-
dicted in this framework and optimized at a pipeline-stage
granularity. Critical output instructions use a fast register
forward stage for communicating their results to remote
cores while critical input instructions use a high perfor-
mance decode stage that reduces their dependence height.
Finally, at the block level, DBCA implements a mechanism
that reissues blocks of instructions while they are still in the
instruction window.

This framework can be implemented on other distributed
systems and can exploit other criticality types. Moreover,
coarse-grained grouping of related instructions at compile-
time similar to the one used in this study can simplify the
implementation and reduce its overheads. Our results show
DBCA can significantly improve power/energy scalability
of the system. For example, DBCA achieves performance
and energy efficiency improvements of 26% and 68%, re-
spectively for 16-core sequential runs compared to an unop-
timized 16-core system. Also, the optimized system using
DBCA in most configurations shows performance scalabil-
ity close to that expected by Pollack’s rule (e.g. 2.7x across
8 cores) [2]. According to this rule, uniprocessor perfor-
mance increases proportional to square root of increase in
complexity or area [2].

Acknowledgements

We thank Mark Gebhardt and Jeff Diamond for their use-
ful feedback. This work was supported in part by National
Science Foundation grant CCF-0916745 and DARPA con-
tract F33615-03-C-4106.

References

[1] The standard performance evaluation corporation (SPEC),
http://www.spec.org/.

[2] S. Borkar. Thousand core chips: a technology perspec-
tive. In Design Automation Conference, pages 746–749,
June 2007.

[3] R. S. Boyer and J. S. Moore. MJRTY - a fast majority vote
algorithm. In Automated Reasoning: Essays in Honor of
Woody Bledsoe, of Automated Reasoning Series, pages 529–
543, 1977.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions. SIGARCH Computer Architecture News, 28(2):83–94,
2000.

[5] B. Fields, S. Rubin, and R. Bodik. Focusing processor poli-
cies via critical-path prediction. In International Symposium
on Computer Architecture, pages 74–85, July 2001.

[6] M. S. S. Govindan, S. W. Keckler, and D. Burger. End-to-
end validation of architectural power models. In Interna-
tional Symposium on Low Power Electronics and Design,
pages 383–388, San Francisco, September 2009.

[7] M. S. S. Govindan, B. Robatmili, H. Esmaeilzadeh, B. Ma-
her, D. Li, A. Smith, S. W. Keckler, and D. Burger. Scaling
power and performance via processor composability. Tech-
nical report, 2010. UT Austin, Department of Computer
Sciences TR-10-14.

[8] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore
era. In IEEE Computer, volume 41, pages 33–38, July 2008.

[9] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core
fusion: accommodating software diversity in chip multipro-
cessors. In International Symposium on Computer Architec-
ture, pages 186–197, June 2007.

[10] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches. In International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 211–222, October 2002.

[11] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ran-
ganathan, D. Gulati, D. Burger, and S. W. Keckler. Com-
posable lightweight processors. In International Symposium
on Microarchitecture, pages 381–394, December 2007.

[12] H.-S. Kim and J. E. Smith. An instruction set and microar-
chitecture for instruction level distributed processing. In
International Symposium on Computer Architecture, pages
71–81, May 2002.

[13] V. Krishnan and J. Torrellas. A chip-multiprocessor archi-
tecture with speculative multithreading. IEEE Transactions
on Computers, 48(9):866–880, September 1999.

[14] V. Krishnan and J. Torrellas. The need for fast communi-
cation in hardware-based speculative chip multiprocessors.
International Journal of Parallel Programing, 29(1):3–33,
2001.

[15] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core archi-
tectures: The potential for processor power reduction. In In-
ternational Symposium on Microarchitecture, pages 81–93,
December 2003.

[16] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A.
Bringmann. Effective compiler support for predicated exe-
cution using the hyperblock. In International Symposium on
Microarchitecture, pages 45–54, November 1992.

[17] S. W. Melvin, M. C. Shebanow, and Y. N. Patt. Hardware
support for large atomic units in dynamically scheduled ma-
chines. In Workshop on Microprogramming and Microar-
chitecture, pages 60–63, November 1988.

[18] R. Nagarajan, X. Chen, R. McDonald, D. Burger, and
S. Keckler. Critical path analysis of the TRIPS architec-
ture. In International Symposium on Performance Analysis
of Systems and Software, pages 37–47, March 2006.

[19] V. Petric, T. Sha, and A. Roth. RENO: a rename-based in-
struction optimizer. In International Symposium on Com-
puter Architecture, pages 98–109, June 2005.

[20] B. Robatmili, K. E. Coons, D. Burger, and K. S. McKin-
ley. Strategies for mapping dataflow blocks to distributed
hardware. In International Symposium on Microarchitecture
(MICRO), pages 23–34, November 2008.

[21] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace
processors. In International Symposium on Microarchitec-
ture, pages 138–148, December 1997.

[22] K. Sankaralingam, S. W. Keckler, W. R. Mark, and
D. Burger. Universal mechanisms for data-parallel archi-
tectures. In International Symposium on Microarchitecture,
pages 303–314, December 2003.

[23] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
N. Ranganathan, D. Burger, S. W. Keckler, R. G. McDonald,
and C. R. Moore. Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture. In International Sympo-
sium on Computer Architecture, pages 422–433, June 2003.

[24] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power
with dynamic critical path information. In International
Symposium on Microarchitecture, pages 114–123, Decem-
ber 2001.

[25] T. Sherwood, E. Perelman, and B. Calder. Basic block dis-
tribution analysis to find periodic behavior and simulation
points in applications. In International Conference on Paral-
lel Architectures and Compilation Techniques, pages 3–14,
June 2001.

[26] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In International Symposium on Computer Archi-
tecture, pages 521–532, June 1995.

[27] D. Tarjan, S. Thoziyoor, and N. Jouppi. HPL-2006-86, HP
Laboratories, Technical Report. 2006.

[28] E. Tune, D. Liang, D. M. Tullsen, and B. Calder. Dynamic
prediction of critical path instructions. In International Sym-
posium on High Performance Computer Architecture, pages
181–195, January 2001.

