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Abstract—Emerging heterogeneous CPU-GPU processors have
introduced unified memory spaces and cache coherence. CPU and
GPU cores will be able to concurrently access the same memories,
eliminating memory copy overheads and potentially changing the
application-level optimization targets. To date, little is known
about how developers may organize new applications to leverage
the available, finer-grained communication in these processors.
However, understanding potential application optimizations and
adaptations is critical for directing heterogeneous processor
programming model and architectural development. This paper
quantifies opportunities for applications and architectures to
evolve to leverage the new capabilities of heterogeneous proces-
sors. To identify these opportunities, we ported and simulated
a broad set of benchmarks originally developed for discrete
GPUs to remove memory copies, and applied analytical models to
quantify their application-level pipeline inefficiencies. For existing
benchmarks, GPU bulk-synchronous software pipelines result in
considerable core and cache utilization inefficiency. For hetero-
geneous processors, the results indicate increased opportunity for
techniques that provide flexible compute and data granularities,
and support for efficient producer-consumer data handling and
synchronization within caches.

I. INTRODUCTION

Heterogeneous systems are evolving to allow tighter CPU
and GPU interaction. Many new systems allow GPUs to
access CPU physical memory and both cores to reference
memory with the same virtual addresses. This capability can
mitigate the complexity of correctly accessing complex data
structures used by both CPU and GPU cores [16, 22]. However,
since data must still move across the PCIe bus in discrete
GPU systems (as shown in Figure 1), programmers must still
carefully manage data movement to achieve good performance.

In addition to unified virtual memory, current heteroge-
neous processors include integrated GPUs (Figure 2), which
share common physical memory. These chips are integrat-
ing coherent communication fabrics among CPU and GPU
cores [4, 23, 35]. Further, tightly-integrated processors even
include cache coherence among cores [15, 30], an area of
active research [18, 26]. These architectures can mitigate costly
memory transfers and allow CPU and GPU cores to perform
fine-grained communication and synchronization in cache.

Currently, it is unclear how programmers may try to use
these emerging system features. These new processors are in
their infancy and application programming interfaces (APIs
like OpenCL 2.0 [17]) to use these features are still solidifying.
As a result, few current benchmarks exercise the performance
capabilities of unified virtual memory architectures, and no
publicly-available benchmarks exercise cache coherent hetero-
geneous processor capabilities.

To better understand the potential evolution of applications
and architectures for heterogeneous CPU-GPU processors, this
paper compares a broad set of existing, publicly available GPU
computing benchmarks against ported versions that remove

Fig. 1. Discrete GPU system with separate CPU and GPU chips.

Fig. 2. Heterogeneous processor with integrated GPU on a single chip.

memory copies. We then analytically quantify the compute
and cache inefficiencies to identify likely optimization targets.
Heterogeneous processors are likely to benefit from three
major optimizations:

• Reducing the temporal distance between data producer
and consumer tasks using finer-grained communica-
tion and concurrently executing compute stages.

• Identifying task data-independence and leveraging
mechanisms to migrate independent work to under-
utilized cores.

• Detecting memory access contention and appropri-
ately modulating access to increase cache efficiency.

Overall, this analysis shows that heterogeneous proces-
sors offer greater compute and cache efficiency opportuni-
ties compared to discrete GPU systems. While removing
copy overheads from current benchmarks results in modest
performance improvement, still half of all memory accesses
result from cache contention caused by residual GPU kernel-
granularity synchronization. Most benchmarks with high cache
inefficiency also show bandwidth limitations, so improving
cache utilization should directly decrease bandwidth demand
and increase benchmark performance.

After reviewing potential gains from these optimizations,
this paper discusses software and hardware directions that
may improve programmability and performance of applications
executing on heterogeneous processors. Software constructs
should offer more flexible compute and data granularities.
Hardware mechanisms should support lighter-weight thread
handling and producer-consumer communication in caches.

The rest of this paper is organized as follows: Sec-
tion II presents a case study motivating deeper exploration of
GPU computing pipeline structures. Section III articulates the
simulation methodology used to compare discrete GPU and
heterogeneous processor systems, and Section IV quantifies
the comparison. Section V describes and quantifies analytical
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Fig. 3. Kmeans simulated and estimated (*) run times for various benchmark organizations.

estimates of run time and memory access improvements in
heterogeneous processors. Section VII discusses related work,
and Section VIII concludes.

II. MOTIVATING PRODUCER-CONSUMER SUPPORT

To motivate pipeline structure investigation, we begin with
a case study of the kmeans benchmark running in our sim-
ulation environment. Kmeans shows significant compute and
caching inefficiency due to the bulk-synchronous pipeline
structure, and up to 77% of run time can be recovered by re-
structuring the application to run on a heterogeneous processor.
The optimizations tested here on kmeans have widely varying
potential benefits for other benchmarks and input sets, but
further results show they are broadly applicable optimization
targets for heterogeneous processors.

A. Example Kmeans Benchmark
From the Rodinia benchmark suite, the kmeans benchmark

iteratively analyzes a set of n-dimensional points to find the
k points that characterize clusters of the points. Each iteration
involves calculating the distance between each of the points
and the current k centers, assigning each point to the closest
center, and then replacing poor centers with new candidate
centers. Distance calculations and center assignments have
wide thread-level parallelism (TLP) and so are performed on
the GPU. The center replacement algorithm has limited TLP,
so assigned centers are copied back from the GPU memory to
perform the center adjustment on the CPU.

Baseline: When using copies in the discrete GPU setting,
kmeans serializes nearly all of the work and copies. Run time
component activity is depicted in Figure 3 as “Baseline”.
Despite only transferring a small amount of data between CPU
and GPU memories in each iteration, over 50% of kmeans
run time is spent copying data. This is due to the asymmetry
of PCIe bandwidth (8GB/s) compared to the CPU and GPU
memory bandwidth (24 and 179GB/s), which allow the CPU
and GPU to process data substantially faster than a PCIe copy.

Bandwidth asymmetry in discrete GPU systems encourages
programmers to minimize data transfers often resulting in
wide, bulk-synchronous pipeline stages. For kmeans, the GPU
sits idle for a substantial portion of run time (82%) though the
GPU completes 95% of the compute operations, indicating that
kmeans incurs very high GPU FLOP opportunity cost1 for bulk
transferring work between CPU and GPU.

1We refer to “FLOP opportunity cost” as the portion of compute FLOPs
that go unused due to a core being inactive

B. Optimizing Kmeans

There are a number of ways that application pipelines can
be restructured to improve performance. However, to date, little
analysis has compared different inefficiencies and opportunity
costs of optimizing GPU application structure for discrete
GPUs versus heterogeneous processors. For kmeans operating
on this particular input set, the programmer’s incentive to opti-
mize increases substantially when running on a heterogeneous
processor. Specifically, removing memory copies provides a
2× run time improvement, but 2× more improvement can
come from further CPU-GPU parallelism and effective cache
management. It is difficult or impossible to employ these
optimizations in current discrete GPU systems.

Asynchronous Memory Copy Streams: In the discrete
GPU system, kmeans performance is hamstrung by the need to
copy data back and forth between CPU and GPU memories.
One option to reduce this overhead is to use kernel fission
and asynchronous streams [21, 36]. Kernel fission requires the
programmer to explicitly divide independent data and compute
chunks of a kernel into separate kernels that can be overlapped
with asynchronous memory copies. The “Asynchronous Copy”
bars of Figure 3 show the run time activity for a 3-wide
asynchronous stream organization.

While a non-trivial code transformation, kernel fission and
streams can improve kmeans run time by 37%. Memory copies
can be overlapped with CPU and GPU execution, though there
are data dependencies that the limit overlap. Despite the data
dependencies, kmeans run time could improve up to the point
that the PCIe link is saturated for the full execution.

Emerging unified virtual memory architectures exist that
allow coherent data synchronization between CPU and GPU
over the PCIe link. However, we expect that the latency
to perform these on-demand synchronizations will be too
prohibitive to allow data handling as efficiently as streams.
For kmeans, performance is likely to still bottleneck on copies,
because the total data copied would remain the same.

Eliminating Memory Copies: In Figure 3, the “No Mem-
ory Copy” bars show the CPU and GPU activity of kmeans
running on a cache-coherent heterogeneous processor without
the need for memory copies. Without the copies, run time can
improve over the baseline execution by nearly the total baseline
copy time, and GPU utilization improves from 18% to 39%.

Unfortunately, this organization is still quite core and
cache inefficient. First, this organization leaves either CPU
or GPU cores idle throughout the complete execution. In
terms of available compute operations, this organization incurs
an opportunity cost of nearly 60% unused FLOPs. Further,
this kmeans implementation was designed for a discrete GPU
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and minimal copy overhead, which encouraged GPU kernel-
granularity synchronization. This residual structure results in
very inefficient use of cache. Each GPU kernel streams input
and output data, and the total size of this data exceeds the
size of cache, causing all produced data to spill off-chip before
they are consumed. This results in roughly 9.5% more memory
accesses than if these results could be passed in cache.

Parallel Producer-Consumer Compute: With a discrete
GPU, extracting parallelism requires kernel fission to utilize
GPU streams to manage data synchronization. In a hetero-
geneous processor, however, data synchronization between
CPU and GPU can happen in coherent memory, possibly
eliminating the need for kernel fission by allowing CPU-GPU
communication with simple memory reads and writes.

In Figure 3, we estimate the run time if CPU consumer
code runs immediately after GPU producers generate their out-
put (“Parallel”). This estimate assumes similar core execution
times as the asynchronous streams version, and analogously,
performance improves up to the point that some component
bottlenecks run time. In the heterogeneous processor, the CPU
becomes the bottleneck, but the overlapped execution results
in a 40% run time improvement over the no-copy case, and
GPU utilization rises to nearly 65%.

Improved Heterogeneous Processor Caching: While the
parallel producer-consumer estimate showed improved core
utilizations, in actual simulation of this benchmark organiza-
tion, performance improves still more due to caching. If the
GPU and CPU work is chunked to synchronize small enough
intermediate data between cores, the CPU is able to access
all of its data out of cache. These cache hits dramatically
reduce CPU memory access latency, which dominated the CPU
execution time. Figure 3 (“Parallel + Cache”) shows that these
caching benefits improve kmeans run time by another 32%, and
GPU utilization reaches 80%.

C. Motivation Summary
Overall, kmeans exhibits the major optimization opportuni-

ties that may become common in heterogeneous processors.
First, overlapping core activity can reduce the opportunity
cost of underutilized cores. Such an optimization is likely
to be more straightforward when cores can communicate
through memory rather than using PCIe transfers. Second,
bringing producer and consumer tasks into closer temporal
proximity has potential to greatly improve the use of cache,
an optimization that is difficult in current discrete GPUs. The
final optimized kmeans here leaves CPU cores underutilized,
and further optimization could focus on migrating computation
to those cores.

III. METHODOLOGY
A. Simulated System Configurations

This paper compares memory access and performance
effects of optimizations for discrete GPUs and forward-looking
heterogeneous processors. To control performance capabilities
and allow flexible system architectures, we simulate the sys-
tems with configuration parameters defined in Table I. Both
systems use the same CPU and GPU cores, and their compute
capabilities are comparable to current mid-range discrete GPU
systems or aggressive heterogeneous processors. Specifically,
CPU cores are out-of-order superscalar capable of 14 GFLOP/s
peak, and they have access to private L1s and an L2 cache.
The GPU contains NVIDIA Fermi-like cores, which can each

TABLE I. HETEROGENEOUS SYSTEM PARAMETERS.

Component Parameters
CPU Cores (4) 4-wide out-of-order, x86 cores, 3.5GHz
CPU Caches Per-core 32kB L1I + 64kB L1D and exclusive,

private 256kB L2 cache, 128B lines
GPU Cores (16) 8 CTAs, 48 warps of 32 threads, 700MHz

48kB scratch memory, 32k registers,
Greedy-then-oldest warp scheduler

GPU Caches 24kB L1 per-core. GPU-shared, banked,
non-inclusive L2 cache 1MB, 128B lines

Discrete GPU System
Interconnects CPU L2s/MCs: 6-port switch,

GPU L1/L2: Dance-hall,
GPU L2s/MCs: Direct links

CPU Memory (2) DDR3-1600 channels, 24 GB/s peak
GPU Memory (4) GDDR5 channels, 179 GB/s peak
PCI Express v2.0 x16, 8 GB/s peak

Heterogeneous CPU-GPU Processor
Interconnects GPU L1/L2: Dance-hall,

All L2s/MCs: High-bandwidth, 12-port switch
Memory (4) shared GDDR5 channels, 179 GB/s peak

manage up to 1536 concurrent threads and issue up to 32 SIMT
instructions per cycle for a rate of 22.4 GFLOP/s peak. GPU
cores each have 48kB of scratch memory and 24kB data +
instruction L1 cache, and they share a 1MB L2 cache.

The discrete GPU system models the split CPU and GPU
caches and memories. The CPU chip accesses DDR3 memory
capable of up to 24 GB/s peak, while the discrete GPU chip has
4 GDDR5 memory channels capable of up to 179 GB/s peak.
Consistent with many current discrete GPU systems, memory
copies are performed using a PCIe link with peak bandwidth
of 8 GB/s between CPU and GPU memories. When data is
copied between CPU and GPU memories, any coherent cache
lines containing data for the destination addresses are written
back or invalidated.

To limit performance effects resulting from memory band-
width differences, the heterogeneous processor CPU and GPU
cores share access to the same GDDR5 memory as the
GPU in the discrete system. The bandwidth of GDDR5 is
likely to be comparable to emerging memory technologies,
such as 2.5D/3D stacked DRAM, which may be used with
heterogeneous processors. For the tests in this study, CPU and
GPU memory access contention has marginal effect compared
to other application-level differences described later.
B. gem5-gpu Simulator

To perform tests with well-controlled and flexible system
architectures, we use the gem5-gpu simulator [27]. gem5-gpu
offers full-system simulation of discrete GPU systems and
heterogeneous processors with flexible memory hierarchies and
PCIe configurations. The GPU model is from GPGPU-Sim
v3.2.2 [5], and the CPU cores are the out-of-order model in
gem5 [6]. All tests use Linux kernel 2.6.28.4.

C. Benchmarks
Depending on their application-level pipeline structure,

GPU computing applications can see widely varying memory
copy overheads and potential optimization targets. We aim to
explore a broad range of these effects, so this study observes
benchmarks from four open-source GPU computing bench-
mark suites. Table II summarizes details about the application-
level structures of all benchmarks in these suites.
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TABLE II. PRODUCER-CONSUMER RELATIONSHIPS IN BENCHMARKS.

P-C Constructs
Num. P-C Pipe Reg- Irreg- SW

Suite Bench Comm. Paral. ular ular Queue
Lonestar 14 14 13 14 13 10
Pannotia 10 10 10 10 10 0
Parboil 12 8 8 8 3 1
Rodinia 22 19 18 19 6 0
Total 58 51 49 51 32 11
Portion 100% 88% 84% 88% 55% 19%

The Lonestar GPU suite [7] contains many benchmarks
with irregular control flow and memory access behaviors
(“Irregular”). Many of these benchmarks operate on graph-
like data structures, and many utilize software queues, or
“worklists”, for tracking available work (“SW Queue”). Simi-
lar to Lonestar, the Pannotia benchmarks [8] perform various
graph analyses, though each is structured to expose avail-
able work without software queues. Pannotia benchmarks are
implemented with OpenCL, but ported to CUDA for this
study. Representing some more traditional GPU computing
workloads, this paper also characterizes the Parboil [31] and
Rodinia [9] benchmark suites. These suites contain many
image and signal processing, machine learning, and scientific
numerical benchmarks, as well as a couple graph handling
benchmarks. Of the total 58 benchmarks in these four suites,
this paper examines 46 that work fully in gem5-gpu and
perform non-trivial computations.

Table II also lists counts of benchmark pipeline charac-
teristics. Most benchmarks (88%) contain multiple producer-
consumer pipeline interactions (“P-C Comm.”), including CPU
execution, GPU kernels, or memory copies between CPU
and GPU memories. Of these 51 applications with producer-
consumer relationships, all but two could be parallelized to run
pipeline stages concurrently or in closer temporal proximity
than the unmodified benchmarks (“Pipe Paral.”). Section V-A
investigates the potential gains from such parallelization.

D. Benchmark Configurations
Memory Copies: To characterize the differences between

applications running on discrete GPUs and heterogeneous
processors, we run benchmarks with two different memory
copy configurations. In discrete GPU simulation, we run
benchmarks largely unchanged from their publicly available
versions2, which use CUDA to allocate and copy memory
between CPU and GPU memory spaces.

The second benchmark configuration removes data copies
between memory spaces. We use a combination of CUDA
library and manual benchmark modifications to eliminate sep-
arate CPU and GPU copies of data. Specifically, for memory
allocations that mirror CPU allocations into the GPU memory
space, we allow the GPU to access the CPU allocation di-
rectly and eliminate the GPU memory allocation. The CUDA
library identifies and eliminates many allocations like this by
observing runtime dynamic CUDA calls.

We also manually modify some benchmarks to eliminate
memory copies. Many allocations only serve to double-buffer
mirrored data. In these cases, the GPU has multiple versions
of the same mirrored CPU data, but runtime analysis cannot

2Benchmark versions working in gem5-gpu are available open-source with
the simulator: http://gem5-gpu.cs.wisc.edu/repo.

safely eliminate redundant allocations or copies. Using con-
sistent, explicit copies between CPU and GPU allocations is
often sufficient to allow the CUDA library to eliminate copies.

These two means eliminate the substantial majority of
memory copy overheads. Specifically, all but one benchmark
(Lonestar bh) see reduced number of copies, and 24 of the 46
benchmarks have at most 1 remaining memory copy. Because
some copies still remain, we refer to this benchmark version as
“limited-copy”. The next section characterizes improvements
from removing copies.

Data Location Assumptions: For each of the benchmarks,
we delineate the portion of run time during which data
handling and computation occur as the region of interest (ROI).
The ROI begins after the CPU sets up all necessary data to be
resident in it’s physical memory, but before the CPU transfers
any data to the GPU memory space or is allowed to launch
GPU kernels. The only exception is Rodinia mummer, which
also reads data from disk while the GPU is executing. Before
the ROI begins, the application is allowed to allocate memory
to be used by the GPU, but these allocations cannot have
been accessed prior to the start of the ROI. We define ROI
completion as the time at which all output data produced by
the application is once again available in the CPU memory. In
the discrete GPU case, this means that resulting outputs are
copied back to the CPU memory space within the ROI. In the
heterogeneous processor, the ROI can end after the last CPU
or GPU activity completes to generate final output.

This ROI definition is important for a couple reasons. Prior
work shows that data copies must be accounted for when
analyzing application-level performance [13], so especially
when directly analyzing memory copy overheads. Further,
many open-source GPU computing benchmarks actually per-
form subsets of full GPU computing applications. Real world
applications may shuttle data through other compute kernels
rather than reading from disk or randomizing inputs, which
are common input methods for benchmarks observed here. In
this case, compute kernels executed prior to and following the
kernels within our ROIs would require that data end up in a
designated location such as CPU-accessible memory.

GPU Memory Management: Besides the architectural
differences between discrete GPUs and heterogeneous proces-
sors, a notable difference between these systems is GPU mem-
ory management. In the discrete GPU setting, GPU memory
is not accessible from CPU cores, so the CPU need not have
access to GPU address translations. A GPU-specific memory
allocator is allowed to map memory for address translations
while the PCIe copy engine or GPU are executing, and GPU
minor page faults are handled completely by the GPU.

In the heterogeneous processor, however, memory map-
pings must be consistent across CPU and GPU. This requires
that both CPU and GPU address translations access a common
page table, and page table updates must be simultaneously vis-
ible to both. To achieve this, gem5-gpu implements GPU page
faults in a manner similar to IOMMU page faults available
in recent Linux kernel versions (e.g. v3.19). Specifically, the
GPU raises an interrupt to the CPU, which performs memory
page mapping and returns the mapping to the GPU.

Prior studies in GPU address translation [24, 25] have
described implementations of efficient GPU address transla-
tion, including TLB and page table walk structures. However,
they have not explicitly studied the performance impact of

4



Fig. 4. Breakdown of memory footprint touched by component type for copy (left bars) and limited-copy (right bars) versions normalized to the copy version.

GPU page faults. The results in this paper show that CPU-
handled GPU page faults can cause significant performance
degradation, and we suggest this as an area of future research.

Input Set Selection: Benchmark input sets were chosen
to ensure that the ROIs meet the following criteria. First, all
benchmarks execute at least 1B instructions combined for both
the CPU and GPU, and total instructions typically exceed 2.1B.
The most instructions executed by any benchmark is 90B.
Second, since the GPU completes a majority of work, input
sets were chosen to ensure that total GPU execution time is at
least 5ms and typically more than 30ms. The longest running
ROI is 1.535s. Finally, input sets were chosen so that total
memory footprint is at least 6MB and usually greater than
42MB for copy benchmark versions. Limited-copy memory
footprints are at least 3.5MB and usually greater than 24MB.

IV. ELIMINATING MEMORY COPIES

Most existing GPU computing applications were developed
for discrete GPU systems and thus use explicit memory copies
to move data between CPU and GPU memories. As a baseline
for further core and cache inefficiency analysis, this section
observes how memory copies affect some basic benchmark
characteristics: memory footprint, memory access counts, and
ROI run time.

The statistics below show that the GPU-kernel-synchronous
structure of existing benchmarks limit the immediate use
of available cores and cache in heterogeneous processors.
Removing memory copies often decreases benchmark memory
footprint and total memory accesses, and run times typically
decrease by the total time of eliminated memory copies.
However, the aggregate number of memory accesses from CPU
and GPU cores tends to remain similar after removing copies,
and CPU and GPU cores see limited utilization improvements.

A. Memory Footprint
The limited-copy benchmark versions typically just mirror

data between CPU and GPU memories, so eliminating mir-
rored data can significantly reduce the total memory footprint.
We measure benchmark memory footprint by observing the
addresses of all memory accesses from CPU and GPU cores,
and in the discrete GPU system, the PCIe copy engine. Figure 4
breaks down these footprints into mutually exclusive subsets
touched by one or more components for the copy and limited-
copy versions of the benchmarks. The plot is normalized
to the total memory footprint of the copy version of each
benchmark (left bar of each pair) to show how the memory
footprint decreases when eliminating mirrored data copies in
the heterogeneous processor setting (right bars).

First, most copy benchmarks replicate data from the CPU
to GPU memory. Copy portions of the bars (red, orange,
purple) make up nearly all of each bar, indicating that most
of a benchmark’s data is copied at some point. In a few other
benchmarks, such as Lonestar bh and Rodinia srad, the GPU
uses substantial temporary data that is only ever resident in
GPU memory. This GPU-temporary memory often stores large
sets of intermediate data that are passed between GPU kernels
and cannot be statically bound to GPU scratch memory.

Second, some object-oriented and graph-based computa-
tions do not touch their whole data sets though their copy
versions need to move that data to GPU memory. For example,
in Lonestar bfs and Pannotia fw benchmarks, the copy engine
touches nearly all of the data, but the CPU and GPU combined
touch less than one-third of that data. Here, the CPU and GPU
traverse the data’s structure, but do not necessarily need to
touch all data for the desired computations. For benchmarks
like this, prior work [1, 2] shows that memory copies can
be saved using smart page placement or on-demand page
migration to the GPU rather than memory copies.

Of the remaining limited-copy memory footprint, the GPU
usually uses more than 70% of the data, suggesting that these
benchmarks use the GPU to process the majority of data. In
few cases (Lonestar bh, Parboil cutcp and fft, and Rodinia dwt
and heartwall), our memory copy elimination techniques are
unable to remove the majority of copied footprint. However,
more extensive manual benchmark modification should be able
to remove all of these copies.

B. Memory Accesses
As expected, the copy benchmarks also incur excess mem-

ory accesses for moving data between CPU and GPU mem-
ory spaces. Figure 5 shows each benchmark’s total memory
accesses broken down by component type for the copy (left
bars) and limited-copy benchmark versions (right bars). Most
commonly, copy accesses account for 4-10% of total memory
accesses, but in a substantial subset of benchmarks, copies
account for more than 20% of total memory accesses.

For benchmarks with a small portion of copy accesses,
CPU and GPU cores often perform multiple accesses per data
element. For most Lonestar and Pannotia benchmarks, memory
copies account for at most 5% of total memory accesses,
because CPU and GPU work perform multiple traversals of
and modifications to irregular data structures, such as graphs.
Similarly, benchmarks, such as Rodinia gaussian and lud,
perform iterative refinement to the majority of their data, so
copies account for a small portion of memory accesses.

When memory copies are removed, Figure 5 shows that
typically all copy memory accesses are eliminated. In the
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Fig. 5. Memory access breakdown by component type for copy (left bars) and limited-copy (right bars) versions normalized to copy version.

Fig. 6. Run time component activity breakdown for copy (left bars) and limited-copy (right bars) versions normalized to copy run time.

geometric mean, the number of total copy accesses declines
by more than 11%. Further, it is common that the CPU and
GPU memory access counts remain substantially similar in
the limited-copy case. Despite the CPU and GPU being able to
share data in caches of heterogeneous processors, the structure
of the applications is such that little cache efficiency can be
gained simply from removing memory copies. We speak more
to this in Section V-C.

Though memory access counts do not indicate any system-
atic caching improvements when moving to a heterogeneous
processor, there are two uncommon conditions under which re-
moving memory copies can significantly change GPU memory
access counts. First, when CPU and GPU share memory, the
GPU must rely on the CPU for page fault handling, which can
upset memory access orderings. For Rodinia srad, page fault
handling causes accesses to be shifted from the GPU to the
CPU, which clears memory pages during page mapping. For
Rodinia pf_float, the page fault handler causes serialization
of some GPU memory accesses, which substantially reduces
GPU cache contention and cuts off-chip accesses by 50%. In
Pannotia fw, GPU access serialization limits L1 cache locality,
which results in an increase in off-chip accesses. These be-
haviors are exceptional, though the affected benchmarks share
other characteristics common to other benchmarks.

Another cause of increased GPU memory access counts
is memory allocation misalignment, which affects GPU co-
alescing and cache contention. Specifically, since memory
allocations are no longer managed by the CUDA library,
which cache-line-aligns GPU allocations, CPU-GPU-shared
allocations can lack good alignment. As a result, GPU access
coalescing can result in more memory accesses to caches, and
stress the ability of the cache to capture temporal locality while
streaming data. The benchmarks marked with ‘∗’ in Figure 5
experience this elevated cache contention. Nearly all of the

extra memory accesses result from misalignment and could be
avoided by using an aligned memory allocator.

C. Run Time
On average, removing memory copies results in modest

performance improvement. Figure 6 shows the run time for
copy and limited-copy benchmark versions broken down by
the portion of run time during which each component is active.
Overall, only CPU-side work can benefit from heterogeneous
processor caching and copy removal. In the aggregate, remov-
ing memory copies results in a 7% run time improvement,
which we break down below.

To the first order, limited-copy benchmark run times im-
prove due to reduced memory copy and CPU execution time.
The reduction in memory copies eliminates much of the run
time during which the PCIe copy engine is exclusively han-
dling data, as demonstrated by benchmarks like Rodinia bfs
and pathfinder. This is a common gain for many benchmarks
and in the geometric mean accounts for an 11% run time
improvement.

As a first major caching benefit in heterogeneous proces-
sors, benchmarks with significant CPU execution time in their
copy versions often see run time improvement due to improved
caching and memory copy removal. As exemplified by most
Lonestar benchmarks, even small memory copies invalidate
data from CPU caches when moving that data between CPU
and GPU memories. Since CPU execution is often latency-
sensitive, CPU progress is slow as it reads data back into
caches from off-chip memory after PCIe transfers. This cache
invalidation is often avoided in the limited-copy benchmarks,
resulting in a geometric mean 6% run time improvement.

This run time plot also illustrates detrimental first order
performance effects of address translation. As mentioned,
GPU page faults cause serialization of some GPU memory
accesses, which would be executed in parallel if not waiting
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Fig. 7. Estimated: Component-overlap run time breakdown for copy (left bars) and limited-copy (right bars) versions normalized to baseline copy run time.

on the CPU page fault handler. On average, this results in
a 9% GPU slowdown, though the majority of this slowdown
is experienced by just three benchmarks: Pannotia pr_spmv,
and Rodinia heartwall and srad (7× slowdown). In these
benchmarks, numerous would-be parallel GPU writes go to
unmapped global memory and must wait on the serialized CPU
page fault handler for address mappings.

V. PIPELINE OPTIMIZATIONS
As noted in the case study, the bulk-synchronous pipeline

structure of GPU computing applications leads to core and
cache inefficiency. In fact, it is widely believed that most
existing GPU computing benchmarks perform serialized CPU
and GPU portions of run time. This belief is confirmed by
reviewing Figure 6 and noting that most execution time for
both copy and limited-copy benchmarks is exclusively running
the copy (red), CPU (yellow), or GPU (blue). This indicates
that there may be reasonable potential to improve performance
by overlapping execution of these components.

In this section, we estimate how eliminating memory copies
can change the potential gains of application restructuring to
better leverage available parallel resources. We identify three
opportunities to improve resource utilization and compare them
in the following subsections. The estimates indicate that better
core utilization could result in run time gains greater than 20%,
and there is significant room to improve cache efficiency in the
heterogeneous processor setting.

A. Overlapping Communication and Computation
For both copy and limited-copy benchmark versions, a

reasonable first cut at improving performance is to run the
same code, but try to expose more overlap of CPU, copy, and
GPU activity. For the discrete GPU, such parallelism might be
achieved with kernel fission and asynchronous streams as de-
scribed previously. In the heterogeneous processor, data could
be passed in memory between CPU and GPU. Specifically,
CPU or GPU consumer threads could be launched, and set
to wait for in-memory signals indicating when data is ready
to be consumed. The producer threads can set these signal
variables as their generated results become available. This
software organization could use similar data blocking structure
as kernel fission + asynchronous streams, but may avoid the
need to split GPU kernels and manage separate kernel streams
since threads synchronize in memory.

To test these benchmark transformations broadly would
be a tremendous amount of work. However, we can employ
analytical modeling to get a sense for their benefits. Us-
ing an Amdahl’s Law-like calculation, we estimate potential
performance gains from overlapping component activity for

all benchmarks. The following formula estimates component-
overlap run time, Rco:

Rco = Cserial +max(C − Cserial, P,G) (1)

Here, C, P ,and G are the CPU, copy, and GPU portions
of run time, respectively. Since the CPU acts as the control
component, some of its activity strictly cannot be overlapped.
Cserial accounts for non-overlapped kernel and memory copy
launch portions of CPU run time. We estimate this by iterating
through pipeline stage statistics and identifying copies and
kernel launches that occur while no other kernels or copies
are executing to mask the launch latency. Cserial can account
for up to 9% of benchmark run time, but only for a few
benchmarks with numerous, serialized kernels and copies, such
as Lonestar sssp_wln and Rodinia bfs.

We briefly validate the component-overlap model by apply-
ing benchmark transformations to three copy and limited-copy
benchmark versions: backprop, kmeans, and strmclstr. Each of
these applications is structured with wide data-level parallelism
per kernel instance, and this structure is common to more than
half of the benchmarks in this study. We chunk the kernel input
and output data either to apply kernel fission + asynchronous
streams in the discrete GPU system, or in-memory “data
ready” signal variables in the heterogeneous processor. By
chunking the data to execute at least four concurrent streams,
the run time of each benchmark improves to within 3.1% of
the component-overlap estimate.

While the component-overlap model is accurate for some
benchmarks, it can still be optimistic for a couple of reasons.
First, the estimate does not account for wide data depen-
dencies from one pipeline stage to the next that may limit
parallelism (e.g. Lonestar dmr or Parboil fft), or memory
access contention that may occur from overlapping component
activity. Second, it is likely that in order to extract core activity
parallelism, more pipeline control code or synchronization
primitives may need to be added, possibly increasing run
time. If, however, the heterogeneous processor sees improved
caching effects, performance could improve beyond this esti-
mate, and we saw this with kmeans.

Analysis: Component-overlap run time estimates for copy
and limited-copy benchmark versions are depicted in Figure 7,
and normalized to the baseline copy run time. These results
suggest that overlapping communication and computation has
the potential to eliminate much of the performance difference
between copy and limited copy versions.

There are two classes of copy benchmarks that are
likely to benefit substantially from component-overlap opti-
mizations. First, many benchmarks with regularly structured
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Fig. 8. Estimated: Migrated-compute run time breakdown for copy (left bars) and limited-copy (right bars) versions normalized to baseline copy run time.

data/computation have significant memory copy overheads.
Due to their regular structure, it is straightforward to use
kernel fission and asynchronous streams to overlap copies with
computation, and the potential performance gains often bring
them in line with the limited-copy benchmarks. Benchmarks
in this class include Parboil cutcp and stencil, and Rodinia
backprop, cell, cfd, hotspot, kmeans, nw, srad, and strmclstr.

The second class of benchmarks has a common outer-loop
structure executed by the CPU. Examples include Lonestar
benchmarks and Rodinia bfs in which the CPU launches
GPU kernels and then waits to decide whether to continue
loop execution until kernels complete and results are copied
back. Often the deciding factor is whether the GPU generated
more work during the last GPU kernel, and this factor can be
triggered at any time during the kernel. This structure could be
optimized if there were mechanisms to signal the CPU thread
as soon as the loop condition became true to allow the CPU
to overlap its control code with the running kernel.

B. Migrating Compute Between Cores
Though overlapped execution could improve benchmark

run times by 10-15%, there is still significant FLOP op-
portunity cost for many benchmarks. The majority of this
underutilization results from poor balance of work across CPU
and GPU cores. Most frequently, CPU cores are left idle for
nearly all benchmark run time, but for some benchmarks, GPU
cores are left idle for significant portions of run time (e.g.
Rodinia dwt, kmeans, and strmclstr).

To quantify the impact of this core underutilization, this
subsection estimates potential performance gains from mi-
grating compute between CPU and GPU cores. This can be
achieved through a number of mechanisms, including identi-
fying portions of computation that can be hoisted from the
beginning/end of one pipeline stage to the prior/next stage,
or identifying data-independent portions of a pipeline stage
that can be computed on underutilized cores. In discrete
GPU systems, work can be migrated between CPU and GPU
cores, though such transformations are often unwieldy since
they also require migrating data. In heterogeneous processors
with shared physical memory, on the other hand, it may be
easier to split parallel work across core types to improve core
utilizations.

This optimistic migrated-compute estimate assumes that
all benchmark compute phases can be effectively distributed
across CPU and GPU cores. Since performance would not
be able to exceed hard resource limitations, the migrated-
compute estimate uses two limiting factors. First, computation
cannot exceed the FLOP rate of cores to which it is migrated,

so we estimate a peak-FLOP/s-relative run time, Rmccore .
Second, effective memory bandwidth cannot exceed the peak
bandwidth to off-chip memory, so we estimate the limit on run
time improvement running up against this bound (RmcBW

).
Perfect migrated-compute run time, Rmc, is estimated from
these as follows:

Rmccore =
C ∗ Fcpu +G ∗ Fgpu

Fcpu + Fgpu
(2)

RmcBW
= M/BWmem (3)

Rmc = max(P,Rmccore , RmcBW
) (4)

As above, C, P , and G are the CPU, copy, and GPU
portions of run time. Fcpu and Fgpu are the CPU and GPU
peak FLOP rates, respectively. M is the total number of
memory accesses, and BWmem is the peak achieved memory
bandwidth, which generally tops out at about 82% of peak pin
bandwidth.

Validating the migrated-compute model is difficult com-
pared to the compute-overlap model, because few program-
ming constructs exist for such transformations. However,
we applied manual program transformations to the kmeans
and strmclstr copy benchmark version that indicate that
migrated-compute estimated gains are plausible. Specifically,
both benchmarks perform matrix-vector and reduction-like
operations on CPU cores, and we rewrote these operations
to run on GPU cores as part of preceding kernels. Where
appropriate, we further utilized GPU atomic operations to
bring effective FLOP rates near the GPU theoretical peak.
These transformations reduced the amount of data transferred
between GPU and CPU memories, and improved run time
by more than 2.5× to within 35% of the compute-overlap
estimates.

Figure 8 shows the results of the migrated-compute run
time estimates for copy (left bar in each pair) and limited-copy
(right bar) benchmark versions. In the common cases, such as
in Lonestar and Pannotia, the results indicate that fully utilizing
compute resources could improve performance by another 4-
13% by moving GPU work to idle CPU cores. Such migration
may be relatively straightforward if the CPU executes tasks
indexed similarly to GPU threads. On the other hand, when
CPU execution dominates baseline run time (e.g. Rodinia dwt),
the potential gains are substantially larger, because shifting
more parallelism to the GPU could reduce the substantial,
unused GPU FLOPs.

Benchmarks with substantial baseline CPU execution time
often contain pipeline organization or memory handling inef-
ficiencies that result from the need to copy data between CPU

8



Fig. 9. Memory accesses broken down by cause for copy (left bars) and limited-copy (right bars) versions normalized to copy benchmark versions.

and GPU memory spaces. For example, inefficient pipeline
organizations sometimes contain medium-to-high TLP-capable
work that the CPU performs single-threaded. Migrating this
compute to the GPU would often require copying data to the
GPU in the discrete GPU setting. Many of these benchmarks
already have high memory copy overheads in the discrete GPU
setting, so migrating data may actually negatively impact per-
formance. These inefficiencies indicate that migrating compute
is likely to be easier in heterogeneous processors. Parboil cutcp
and lbm, and Rodinia backprop, dwt, kmeans, pf_naive, and
strmclstr contain such inefficiency.

Other benchmarks with substantial CPU execution time
have high data movement overheads. Parboil fft and stencil,
and Rodinia mummer contain memory copies for double buffer-
ing data, or clearing memory regions, which are costly CPU
operations. We expect these could each be optimized for
heterogeneous processors by improving their data structures
to eliminate the need for these memory operations.

Finally, it is likely that remaining copy-dominated bench-
marks (20% of benchmarks with red portions in Figure 8 bars)
will be difficult to optimize on discrete GPUs. In most of these
cases, this performance bottleneck is largely fundamental to the
computation being performed: Significant data must be moved
relative the amount of computation completed on that data.
Further, of these benchmarks, Parboil fft, Rodinia backprop,
nw, and strmclstr contain many-to-few data dependencies be-
tween pipeline stages, suggesting that inter-stage optimization
will be difficult in the presence of memory copies.

C. Coordinated Use of Cache Capacity
The performance gain estimates above do not account

for an important feature of heterogeneous processors not
available in discrete GPU systems: shared CPU-GPU caching.
The GPU-kernel-synchronous pipeline structure of existing
benchmarks causes large per-pipeline-stage memory footprints,
which frequently push data out of cache before it can be
reused. Without memory copies to work around, heterogeneous
processors have flexibility to improve shared cache manage-
ment and increase performance.

To quantify opportunities for better cache data reuse, we
inspect and categorize off-chip memory accesses based on
their relationship to other memory accesses. At the off-chip
interface, we record whether a cache block was previously
accessed off-chip, the type of the access (read or write), the
type of the previous access, and the reuse distance in terms of
pipeline stages since previous access. We identify four classes
of memory access that may be reduced or eliminated through
better benchmark organization or caching. Figure 9 shows the
breakdown of these memory accesses, which we describe next.

Required memory accesses: Compulsory memory ac-
cesses include the first off-chip read from and last write to
a piece of data. Such accesses must occur to complete the
computation, so they cannot be eliminated. Grouped with
compulsory accesses (blue), long-range reuse accesses occur
to data that has been previously accessed, but the time between
the accesses spans multiple pipeline stages. Reducing these ac-
cesses may be possible, but would probably require substantial
benchmark restructuring to improve temporal locality.

Spills: There are two categories of memory accesses
caused by cache “spills” from one pipeline stage to the next
(orange shades in Figure 9), and they represent about 10%
of memory accesses on average. First, in bright orange, “W-R
Spills” count memory writes from one stage that are read in the
next stage, and thus represent producer-consumer relationships
between stages. In darker orange, “R-R Spills” are reads from
the same data in consecutive pipeline stages, indicating that the
stages share input data. Inter-stage spills commonly result from
GPU kernel stages that produce or consume data quantities
in excess of cache capacity, another symptom of the GPU-
kernel-synchronous structure of these benchmarks. As a result
of their pipeline organizations, most benchmarks experience
little reduction in cache spills when removing memory copies.

Eliminating inter-stage cache spills can result in signifi-
cant performance improvement, especially when shifting work
between CPU and GPU cores. In the kmeans case study,
overlapping CPU and GPU execution in the heterogeneous pro-
cessor eliminated the 9.5% of accesses that resulted from W-R
spills, and subsequent cache hits increased CPU performance
by 2.6×. CPU cores tend to be more sensitive to memory
access latency than GPU cores [14], and shifting accesses from
off-chip memory to cache hits can decrease CPU run time
proportionally to the reduction in access latency [10].

Contention: When a pipeline stage accesses a large con-
current memory footprint, cache capacity contention can occur
causing data to be evicted from cache before it can be
reused. Further accesses must pull the data back from off-
chip. Most frequently, these repeated contention accesses are
reads (“R-R Contention”), which account for 38% of total
accesses and upwards of 80% for many benchmarks. Other
contention accesses begin with a writeback of the data (“W-
R Contention”), but the data is read again during the same
pipeline stage, indicating that the writeback occurred before all
uses of the data were complete. These accesses can account for
up to 36% of a benchmark’s accesses. The substantial portion
of contention accesses indicates that pipeline stage working
sets often greatly exceed the available cache capacity.

Figure 9 also indicates significant potential performance
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gain by reducing cache contention. As denoted by ‘∗’ in
the figure, many benchmarks bump against off-chip memory
bandwidth limitations during cache contentious pipeline stages.
Most of these bandwidth-limited benchmarks (e.g. Lonestar
and Pannotia) also show significant cache contention memory
accesses. Reducing the excess accesses is likely to proportion-
ally reduce the memory bandwidth demand and run time.

VI. KEY IMPLICATIONS
The results in the last section indicate substantial oppor-

tunity to optimize core and cache utilization in heterogeneous
processors. Potential research directions that will be applicable
include producer-consumer parallelism, compute migration,
and shared/cooperative cache management.

Software and hardware should provide efficient means
to move producer and consumer tasks into closer temporal
proximity. To achieve this, prior work has proposed kernel
fusion [36] and data pyramiding [32] for GPU-GPU producer-
consumer relationships. However, these tend to be complicated
program transformations, which can encounter resource limi-
tations, such as GPU register and scratch memory capacity.
These methods can still result in cache spills, as experienced
by Parboil stencil, cell, hotspot, and pathfinder.

More recently, CUDA and OpenCL have added methods
to improve producer-to-consumer programmability. CUDA 5.0
introduced dynamic parallelism [20], which allows GPU code
to dynamically launch consumer kernels. While this technique
can provide programmability benefits for dynamic and irregu-
lar applications, it has been found that kernel launch overheads
can outweigh performance benefits [34]. OpenCL 2 added
support for work queues, which allow producer tasks to queue
generated work for other tasks to consume [17]. While queues
may also provide producer-to-consumer programming flexibil-
ity, programmers will need to carefully pack data to maintain
good GPU memory access coalescing for performance and
efficiency.

Moving producer and consumer tasks into closer temporal
proximity may raise new caching challenges. If producers
generate data more quickly than consumers can pull cached
data, spills will still occur. Software or hardware techniques
could modulate the rate of data production and consumption
to keep performance-sensitive data on chip. Further producer-
consumer analysis techniques should improve identification of
a task’s live data and estimation of concurrent memory foot-
print to aid the programmer in placing data in available cache
to avoid existing cache contention. Such techniques could
prove very valuable for applications with irregular memory
accesses (e.g. most Lonestar and Pannotia benchmarks).

For heterogeneous processors, compute migration could
unlock further fusion-like optimization opportunities. When
CPU cores provide reasonable compute resources, migrat-
ing short-running GPU kernels to CPU cores could increase
pipeline compute overlap and increase effective cache capacity
when CPU cores have private, non-inclusive cache. Such
optimization may work in benchmarks with multiple, varying
complexity GPU kernels, as in Lonestar dmr, mst, or sp.

Finally, this paper discusses ways that existing benchmarks
may be optimized for heterogeneous processors, and identifies
constructs that may be directly used to develop new applica-
tions for heterogeneous processors. Forward-looking applica-
tion development will likely adopt light-weight task handling
and data dependency tracking early to ease the effort required

to leverage available heterogeneous processor caching, since it
is a primary benefit over discrete GPU systems.

VII. RELATED WORK
In addition to the many studies cited throughout the paper,

we identify a few classes of related work. First, while prior
benchmark characterizations focus mostly on the GPU-side
resources and behaviors [7–9, 31], this study focuses on the
benchmark pipeline structures and interaction of all compo-
nents in the systems. We are not aware of any prior studies
that compare such results across many benchmark suites.

Prior studies propose methods to manage concurrency and
optimize software pipeline structure. These mostly target mul-
ticore CPU and SMP systems [12, 33, 37] rather than systems
containing GPUs, and few characterize potential optimizations
to whole application pipeline structures.

Finally, many prior studies look at GPU application opti-
mization (e.g. [19, 29]) and run time comparisons [11], but we
are not aware of any prior studies that quantify potential op-
timizations focused around the elimination of memory copies
in heterogeneous CPU-GPU processors. However, there are
studies that describe results from mitigating redundant data and
copies in other settings, such as OS data pipes to GPUs [28],
and networking [3, 38].

VIII. CONCLUSION
This paper compares GPU computing application optimiza-

tion opportunities for discrete GPU systems and heterogeneous
CPU-GPU processors. Benchmarks were ported to remove
memory copies and run in cache-coherent heterogeneous pro-
cessors. When comparing core utilization efficiency, the poten-
tial gains for improving core parallelism in either system type
are similar. However, it is likely that programming models will
make it easier to capture parallelism gains in the heterogeneous
processor.

A memory access characterization indicates that the bulk-
synchronous nature of GPU computing applications causes
poor cache efficiency. Data is often spilled off-chip before
it can be reused. The layout and use of data indicates that
heterogeneous processors are likely to provide caching oppor-
tunities that can improve application performance beyond the
capabilities of discrete GPU systems. To capture these oppor-
tunities is likely to require flexible data/compute granularities
and migration, and coordinated/intelligent caching.
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