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Abstract

In this paper, we study the space of chip multiproces-
sor (CMP) organizations. We compare the area and per-
formance trade-offs for CMP implementations to determine
how many processing cores future server CMPs should
have, whether the cores should have in-order or out-of-
order issue, and how big the per-processor on-chip caches
should be. We find that, contrary to some conventional
wisdom, out-of-order processing cores will maximize job
throughput on future CMPs. As technology shrinks, limited
off-chip bandwidth will begin to curtail the number of cores
that can be effective on a single die. Current projections
show that the transistor/signal pin ratio will increase by a
factor of 45 between 180 and 35 nanometer technologies.
That disparity will force increases in per-processor cache
capacities as technology shrinks, from 128KB at 100nm, to
256KB at 70nm, and to 1MB at 50 and 35nm, reducing the
number of cores that would otherwise be possible.

1 Introduction

Chip multiprocessors (CMP) designs are a promising ap-
proach for increasing job throughput in servers. The first
CMPs are starting to appear in the commercial sphere, no-
tably IBM’s Power4 design, which has two processors. The
Compaq Piranha research effort, though not implemented
for a commercial product, evaluates using CMPs with many
small cores for server workloads. It is likely that future
CMPs will have considerably larger numbers of proces-
sors than today, for two reasons [1]. First, the superscalar
paradigm is reaching diminishing returns, particularly as
clock scaling will soon slow precipitously. Second, global
wire delays will limit the area of the chip that is useful for
a single conventional processing core. Since a single pro-
cessing core will be unable to use the bulk of the chip real
estate, the additional transistors will likely be used for ad-
ditional cores.

In this paper, we present the first study of how CMP de-
signs will evolve as CMOS technology is scaled to ultra-
small (35 nanometer) devices. For each technology gener-
ation over the next decade, we determine the CMP orga-
nizations that maximize total chip performance, which is
equivalent to job throughput in this study. We consider the
following factors:

� Processor organization: Whether powerful out-of-
order issue processors, or smaller, more numerous in-
order processors provide superior throughput.

� Cache hierarchy: The amount of cache memory per
processor that results in maximal throughput. The
ideal capacity is a function of processor organization,
memory latency, and available off-chip bandwidth.

� Off-chip bandwidth: Finite bandwidth limits the num-
ber of cores that can be placed on a chip, forcing more
area to be devoted to on-chip caches to reduce band-
width demands.

� Application characteristics: Applications with differ-
ent access patterns require different CMP designs to
attain the best throughput. Different applications dis-
play varying sensitivities to L2 cache capacity, result-
ing in widely varying bandwidth demands.

These constraints have complex interactions. More pow-
erful processors place a heavier individual load on the off-
chip memory channels, but smaller, more numerous pro-
cessors may result in a heavier aggregate bandwidth load.
Larger caches reduce the number of off-chip accesses, per-
mitting more processors to share a fixed bandwidth, but the
larger caches consume significant area, resulting in room
for fewer processing cores. In this paper, we study the rel-
ative costs in area versus the associated performance gains,
showing the organizations that maximize performance per
unit area for future technology generations. Since our fo-
cus is on performance bounds, we do not consider power
limitations in this study.

Our results show that the number of processing cores that
maximize total job throughput does indeed grow large with
future technologies, reaching 18, 28, 23, and 47 processors
at 100, 70, 50, and 35 nanometers. However, we find that
the useful number of processors will be limited by off-chip
bandwidth, because the number of transistors is predicted to
increase much faster than the number of signaling pins [22].
We also find that, when applications are not bandwidth
bound, the design that supports maximal chip throughput
uses powerful out-of-order cores with small (128KB) level-
two caches per core at 100 nanometers. At smaller feature
sizes, as more processors are forced to share memory chan-
nels due to restricted pin counts, many applications begin
to be limited by memory bandwidth. In that case, larger
per-processor caches are necessary to reduce the off-chip
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Figure 1. Chip-multiprocessor model.

load, resulting in ideal designs of 256KB per-processor L2
caches at 70nm, and 1MB per-processor caches being ideal
at 50nm and 35nm.

In Section 2, we describe the CMP organization that we
use for our experiments, as well as the area model and pin
count extrapolations that we use for determining maximal
performance/area. In Section 3, we explore how shrinking
technology and different cache and memory channel orga-
nizations affect the performance of applications running on
single processing cores. In Section 4, we couple the perfor-
mance results with an area analysis to determine the highest
performance (throughput) per unit area at each technology.
In Section 5, we discuss the relevant characteristics of com-
mercial server workloads, which we do not model in this
study. In Sections 6 and 7, we survey related work and con-
clude.

2 Technology models for evaluating CMP al-
ternatives

In this paper, we focus on throughput-oriented work-
loads with no sharing of data among tasks to evaluate the
area efficiency of chip-multiprocessors. As shown in Fig-
ure 1, our CMP model has two levels of cache hierarchy,
with L1 and L2 caches coupled to individual processing
cores for scalability. An alternative to this cache hierarchy
is a physically shared L2 cache. However, the performance
of a large monolithic L2 cache shared by a number of pro-
cessors will sharply diminish with advances in fabrication
processes and increases in clock rates, due to large cache
bandwidth requirements and slow global wires. Logical L2
cache sharing and L2 bank coherence are possible in our de-
signs, although the applications presented in this paper have
no inter-processor sharing. Each L2 cache is connected to
the off-chip DRAM through a set of distributed memory
channels. Since the number of memory channels is lim-
ited by physical and economic constraints, the allocation

of the finite bandwidth must be considered when designing
cost-effective CMPs. Thus our models account for time-
multiplexing of the memory channels, and we investigate
effects of channel contention on the ideal balance between
cache and processor area allocations.

2.1 Area models

An analysis of area efficiency requires accurate models
of processing cores and caches of varying capacities. We
have derived a set of technology-independent area mod-
els empirically, by measuring die photographs of commer-
cial microprocessors and normalizing the results for feature
size [13]. To enable simple area trade-offs between proces-
sor core areas and cache bank areas, the model expresses all
area in terms of cache byte equivalent area (CBE), which is
the unit area for one byte of cache, similar to the Equiva-
lent Cache Transistor metric of Farrens et al. [12]. We use a
metric expressed in bytes for greater ease in reasoning about
processor and cache area trade-offs. The CBE includes the
amortized overheads for tags, decoders, and wires, in addi-
tion to the 8 SRAM cells.

For our processor model, we considered in-order and
out-of-order issue processors ranging from 2-way to 8-way
issue widths. In Table 1, we show the harmonic means of
IPCs of our benchmarks listed in Section 3, for each model
with varying L2 cache size. The number of ALUs are scaled
with the issue width. For in-order cores, issue width has lit-
tle impact on the performance, but out-of-order cores have
significant performance improvement from 2 to 4 way issue
cores. When the performance per unit area is considered,
we found 2-way in-order and 4-way out-of-order proces-
sors are the most area-efficient models, and chose them as
our processing core models. Table 2 shows the complete
configuration of the two processor models used in this pa-
per.

����
is a simple 2-way in-order issue processor that is

roughly comparable to the Alpha 21064 [20].
�������

pro-
cessor is a more aggressive, 4-way issue out-of-order pro-
cessor comparable to the Alpha 21264 [17]. These simu-
lated processors have different microarchitectures than the
Alpha 21064 and Alpha 21264, but are intended to model
processors of similar capabilities implemented with similar
transistor budgets. The results of this model show that the
core area of

�������
is five times larger than that of

� ��
.

This paper assumes a large but fixed sized die of�����������
( � � �!�#" � �����

) across all of the technologies.
With smaller feature sizes, the available area for cache
banks and processing cores increases. Table 3 displays die
area in terms of the cache-byte-equivalents (CBE), and for
reference, $ � where $ is equal to one half of the feature size.
The

����
and

� �����
columns show how many of each type

of processor with 32KB separate L1 instruction and data
caches could be implemented on the chip if no L2 cache



L2 cache size 2-way 4-way 8-way
In-order 128KB 0.20 0.21 0.21

256KB 0.23 0.24 0.25
512KB 0.24 0.25 0.25
1MB 0.27 0.28 0.29

Out-of-order 128KB 0.26 0.31 0.33
256KB 0.31 0.38 0.40
512KB 0.32 0.39 0.41
1MB 0.38 0.47 0.50

Table 1. Harmonic means of IPCs for six pro-
cessor models.

%'&)( %�*�+-,
Instruction issue in-order out-of-order
Issue width dual-issue quad-issue
Instruction window (entries) 16 64
Load/store queue (entries) 16 64
Branch predictor bimodal (2K) 2 level (16K)
Number of integer ALUs 2 4
Number of floating-point ALUs 1 2
Estimated core area (CBE) 50 KB 250 KB

L1 Instruction cache 32 KB 32 KB
L1 Data cache 32 KB 32 KB

Total area (core + I/D caches) 114 KB 314 KB

Table 2. Processor model parameters.

area were required. The primary goal of this paper is to de-
termine the best balance between per-processor cache area,
area consumed by different processor organizations, and the
number of cores on a single die.

2.2 I/O pin bandwidth

While increasing transistor budgets can accommodate
large numbers of processing cores on a single chip, the com-
munication between the chip and the rest of system is both
critical for performance and expensive to scale. The num-
ber of signal I/O pins built on a single chip is limited by
physical technology and does not scale with the number
of transistors. Figure 2 shows the projected ratio between
chip transistor capacity and signal pin count, according to
the SIA Roadmap, along with the absolute number of sig-
nal pins projected to be available in each technology [22].

Gate length CBE (Megabytes) .0/ area
% &1( % *�+-,

100nm 7.6 1.60e+11 68 24
70nm 15.5 3.26e+11 139 50
50nm 30.5 6.40e+11 273 99
35nm 61.9 1.30e+12 556 201

Table 3. Total Chip Area.
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Figure 2. Transistors per IO pin.

While pin count is increasing, the number of transistors is
increasing at a much higher rate. For example, in a 35nm
technology there will be 45 times more transistors per pin
than in a 180nm technology.

Another factor limiting off-chip communication is that,
to date, I/O signaling speeds have not increased at the same
rate as processor clock rates. It is common today to find a
1 GHz processor connected to memory through a 133MHz
back-side bus. Even though active research aims to improve
pin bandwidth by substantially increasing the pin transfer
rates into the Gigabit per second regime [9, 11, 26], the dis-
parity between the computation capacity and off-chip band-
width will persist for the foreseeable future. For our exper-
iments, we scale the chip pin density according to the SIA
projections for signal pin density at a fixed 400 2�243 die
size. We scale the pin speeds linearly with technology at
one-half the speed of the processor clock. This ratio is con-
sistent with a next-generation 1.6GHz processor incorporat-
ing the 400MHz DRDRAM parts with dual-edge signaling,
for an effective 800MHz data transmission rate.

2.3 Maximizing throughput

In a CMP, the performance on server workloads can be
defined as the aggregate performance of all the cores on the
chip. For these workloads, two parameters—the number
of cores ( 576 ), and the performance of each core ( 8�9 )—are
necessary to estimate peak performance 8 6;:=< of a server
CMP:

8�6;:><@?BADCFE9HG�I 8�9
The performance of an individual core in a CMP ( 8 9 )

is dependent on application characteristics such as available
instruction level parallelism, cache behavior, and communi-
cation overhead among threads. For applications that spend
significant portions of their execution time in communica-
tion and synchronization, parallel efficiency of the applica-
tions drops precipitously, and realized 8�6;:>< will drop below



peak J�K;L>M . However, in many server applications, threads
are initiated by independent clients, and they rely on rela-
tively coarse-grained data sharing (or no sharing at all), thus
resulting in high parallel efficiency.

To simplify our initial study on CMP designs, we focus
on the ILP and cache behavior of serial applications, de-
ferring a study of application communication and synchro-
nization effects to future work. Our base assumption in this
study is that all processes are independent of one another,
which is the case in a multiprogrammed environment. The
metric of performance in this paper is total throughput, mea-
sured in instructions per clock (IPC). Given a fixed die size,
this metric is equivalent to an area efficiency metric. The
optimization goal is to balance the number of cores with the
performance and bandwidth demands of individual cores.

3 Application characteristics

The best allocation of processor area, cache area, and
bandwidth depends on the the characteristics of the applica-
tions in the workload. This section characterizes the appli-
cations in this study based on their resource demands. We
chose ten applications from the SPEC2000 benchmark suite
and the sphinx speech recognition application to provide a
wide range of memory system behavior. The SPEC2000
applications include mesa, mgrid, equake, gcc, ammp, vpr,
parser, perlbmk, art and mcf. The experimental results
show that the applications can be categorized by the fol-
lowing criteria:

N Processor-bound: applications whose working sets are
captured easily in the L2 cache, who require few ex-
ternal DRAM accesses, and as a result are largely in-
sensitive to cache capacity and bandwidth restrictions.
Mesa, mgrid, and equake are in this class.

N Cache-sensitive: applications whose performance is
limited by L2 cache capacity, as larger caches capture
increasing fractions of the working sets. Gcc, ammp,
vpr, parser, and perlbmk are in this class.

N Bandwidth-bound: applications whose performance is
limited strictly by the rate that data can be moved be-
tween the processor and the DRAM. The working sets
of the applications are much larger than L2 cache size,
or there is little locality in the access patterns. Art, mcf,
and sphinx are in this class.

Applications are not bound to one class or another; they
move among these three domains as the processor, cache,
and bandwidth capacities are modulated. To help charac-
terize the memory behavior of the applications, we use the
metric of DRAM references per thousand instructions. A
DRAM reference results directly from an L2 cache miss or

writeback. Consequently, this metric follows directly from
the characteristics of the application, the L2 cache capacity,
and as shown in Section 3.4, the number of processors in
the CMP, due to sharing of memory channels by multiple
processing cores.

3.1 Experimental methodology

We measure instruction throughput and memory behav-
ior using the SimpleScalar tool set [5]. We configured Sim-
pleScalar to model both the in-order and out-of-order pro-
cessors, J�O�P and J�Q�R�S , described in Table 2. We further
modified SimpleScalar for the chip-multiprocessor experi-
ments to run multiple copies of the same application with
varying numbers of memory channels and sharing of the
channels among the processors. The memory system sim-
ulates non-blocking, write-back caches, and bus contention
at all levels. The L1 instruction and data caches are two-
way set associative with 64-byte blocks, and the L2 caches
are four-way set associative with 128-byte blocks. To fo-
cus more directly on the larger L2 caches, L1 instruction
and data caches are fixed at 32KB. For our benchmarks,
the applications show little performance improvement with
larger L1 caches, due to projected increase in access delays
at smaller technologies. We therefore used the smallest of
these equivalently performing cache organizations, since it
was the most area efficient.

To simulate the effects of cache size on cache access la-
tency, we used the ECacti tool to determine access latency
as a function of cache capacity [21, 25]. Given the cache
capacity, associativity, number of ports, and number of data
and address bits, ECacti finds the best cache configuration
(minimal access time) by modeling a large number of alter-
native cache organizations. In this section, we use only the
parameters of a 70nm process. In this technology, the cache
hit latencies of 128KB, 256KB, 512KB, and 1MB are 4, 5,
7, and 9 cycles, respectively.

To account for aggressive, next-generation memory sys-
tem technology, the DRAM portion of our simulator models
Direct Rambus memory channels in detail [7]. The data bus
is clocked at 400 MHz, and data are transferred on both
edges of the clock. A Rambus channel uses 30 pins for con-
trol and data signals, with a data width of 2 bytes. If more
bandwidth is needed and pins are available, multiple Ram-
bus channels may be used in concert to form a single, logi-
cally wider memory channel. We use two Rambus channels
for our memory channel, resulting in a total of 60 pins per
channel with a data width of 4 bytes. As mentioned in Sec-
tion 2, the Rambus DRAM clock rate is set to effectively
one-half (one-quarter clock with dual-edge transition) that
of the processor, and assumes that memory channel speeds
will scale with processor clocks for future technologies.

For each application, the first five billion instructions of
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Figure 3. IPC versus rate of DRAM accesses.

execution are skipped to avoid simulating benchmark ini-
tialization, and the subsequent 200 million instructions are
simulated in detail.

3.2 Application resource demands

To investigate the uniprocessor memory requirements of
the applications, we varied the processor model and L2
cache capacity to modulate the DRAM reference frequency.
The resulting instruction throughput is shown in Figure 3,
as a function of reference frequency. For each application,
a family of points is plotted corresponding to the two pro-
cessor models ( T�U�V and T�W�X�Y ) and L2 cache capacities
ranging from 128KB to 1MB. The general behavior for all
of the applications is an increase in DRAM reference fre-
quency as cache capacity is decreased, resulting in a re-
duction in IPC. Unsurprisingly, the IPC for the out-of-order
processor uniformly exceeds that of the in-order processor,
although the two organizations converge as the applications
become bandwidth bound, with DRAM reference frequen-
cies greater than 25 per 1000 instructions. We note that the
benchmarks exhibiting more than 4 references per 1000 in-
structions show remarkably similar performance as a func-
tion of DRAM access rate. The applications can be divided
into the three categories based on their position along the
x-axis:

Z Processor-bound benchmarks: The applications mesa
and mgrid have few DRAM references per instruc-
tion. The IPC for these programs is high, particu-
larly for T�W�X�Y . The IPC, as well as the DRAM ref-
erence frequency, is largely insensitive to cache ca-
pacity. Equake exhibits similar behavior, even though
its DRAM reference frequency is much larger than
mesa and mgrid. Thus processor-bound applications
show relatively high IPC and have working sets small

enough to fit into moderately sized L2 caches.

Z Cache-sensitive benchmarks: The DRAM reference
frequency and performance of gcc, ammp, parser,
perlbmk, and vpr are much more dependent upon the
L2 cache capacity. As cache sizes increase, the mem-
ory references tend to drop, making these applications
appear to be processor-bound, particularly when the
cache becomes large enough to hold the current work-
ing set. With smaller cache capacities, reference fre-
quency increases and IPC drops substantially.

Z Bandwidth-bound benchmarks: sphinx, art and mcf
place enormous bandwidth demands on the off-chip
interconnect. Even though large L2 caches reduce
DRAM reference frequency somewhat, the effective
lack of a working set results in low IPC even with the
largest 1MB L2 caches. Because the L2 cache hit rate
is so low, performance is directly proportional to the
available bandwidth.

3.3 Processor organization and cache size

As shown in Figure 3, uniprocessor performance de-
pends both on the processor organization and cache capac-
ity. However, the effectiveness of increased cache capac-
ity and out-of-order processors is limited by the bandwidth
demands of the applications. To display these characteris-
tics more clearly, Figure 4 shows the IPC, DRAM access
frequency, and memory channel utilization as a function of
cache capacity. Four applications are shown: mesa (proces-
sor bound), gcc (cache sensitive), and sphinx and art (band-
width bound).

From this figure, we note the following points. First, the
gap between the T U�V and T W�X�Y configurations in columns
(a) depends on the memory demands of the benchmark. The
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Figure 4. Effect of varying L2 cache size.

gap is the largest for the processor-bound benchmark (mesa)
, indicating that out-of-order cores will be more area ef-
ficient for that category. For the other benchmark (gcc),
the performance of the out-of-order and in-order cores con-
verges, as cache size drops and more frequent requests are
made to memory.

Second, the data in columns (b) indicate that larger
caches cause sharp reductions in L2 misses for the cache-
sensitive benchmarks (and for art when the cache grows
sufficiently large).

Finally, in columns (c) the data show that the out-of-
order cores place heavier demand on the channel utilization.
That demand results from the [�\�]�^ cores moving the same
quantity of data across the wires in a shorter time. We also
note that the Rambus channels saturate at approximately
80% utilization, due to finite bandwidth on the command
buses.

Several working sets are clearly visible in these data.
When the L2 cache is increased from 256KB to 512KB, gcc
shifts from the cache-sensitive category to being processor
bound. The miss rate for art drops significantly when the L2
cache is increased to 1MB. However, even with that drop,
art is still bandwidth bound, with over 50 DRAM accesses
per 1000 instructions.

We define processor bound as having fewer than 5 off-
chip accesses per 1000 instructions, and bandwidth bound
as greater than 25. With that definition, it is clear that only
two of the benchmarks shown here could tolerate any signif-
icant channel sharing: gcc for caches greater than 256KB,
and mesa for any of the cache sizes that we measured.

3.4 Channel sharing

Channel sharing arises when multiple processes are ex-
ecuting simultaneously on different processors. Figure 5
plots the aggregate IPC seen by a number of processors
sharing a single channel. The data show that the processor-
bound job mesa exhibits good scaling of throughput with
increased numbers of channel sharers, except for those ex-
periments with the smallest (128KB) caches. Gcc scales or
saturates, depending on whether the cache is large enough
to hold its distinct, 400KB working set. The bandwidth-
bound jobs sphinx and art show no improvement as more
jobs are added, since their bandwidth is the critical resource
and already saturated at one job. We note that again, the per-
formance of the in-order and out-of-order cores converge as
applications become bandwidth bound. Once too many pro-
cessors are sharing a channel, adding more processors no
longer improves throughput; that area would be better spent
increasing the sizes of the caches and reducing the load on
the channel. It is exactly that area/performance trade-off
that we evaluate in the subsequent section. The utilization
of the channel matches the throughput scaling; when the
channel starts to reach saturation, throughput levels off.

In Figure 6, we plot the utilization of the channel that is
shared by one to eight processing cores in gcc. When the
channel in gcc becomes saturated for 128KB cache, utiliza-
tion drops as more sharers are added. This counterintuitive
result occurs because of decreased row buffer locality in the
DRDRAM banks. Increased row misses cause gaps in the
Rambus command bus schedule, which manifest as slightly
lower data channel utilization.
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Figure 5. Performance scalability versus channel sharing.
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4 Maximizing CMP throughput

In the previous section, the results showed that our ap-
plications put a widely varying load on the memory subsys-
tem, and that total job throughput levels off when the off-
chip bandwidth becomes saturated. In this section, we com-
bine our area analysis with performance simulations and our
technology projections to determine which CMP configura-
tions will be the most area-efficient for future technology
generations.

4.1 Best utilization of chip area

On the left half of Table 4, we show the number of
processing cores that will fit on a _�`�`�a�acb chip built in
70nm technology (a total of 15.5 million CBE). As the per-
processor caches grow larger, the relative differences be-
tween the areas for the d�e�f and dFg�h�i processors decline.
With 128KB L2 caches, 65 d�e�f cores and 35 d�g�h�i cores
can fit on a chip, but with 1MB caches, the number of cores
drops to 13 and 11, respectively. On the right half of Ta-
ble 4, we show the number of processor cores that share a

channel for each organization. For the 128KB, d e�f proces-
sors, there are over three processors sharing each channel,
but for large-cache designs, the number of sharers drops to
one.

In Figure 7, we show how the number of cores, number
of channel sharers, and cache sizes affect area efficiency.
The y-axis measures total instructions per cycle across all
of the processing cores on the chip, which is equivalent to
performance per unit area (since the area is held constant in
all experiments). We model non-integer numbers of chan-
nel sharers by having some processors share more channels
than others. We do not simulate every processor on the chip,
but instead simulate just enough to compute the IPC for a
subset of the processors, and then scale that result to rep-
resent chip-level throughput; our the assumption is that all
processors are running the same job, albeit at skewed inter-
vals.

The four graphs in Figure 7 show, from left to right, the
total chip throughput in IPC for each of the three benchmark
classes (processor bound, cache sensitive, and bandwidth
bound) and the total across all benchmarks. The IPCs are
computed as the harmonic means of the total chip through-
put for the benchmarks in that class, at each design point.
We show the means for each benchmark class, since the har-
monic mean IPC across all benchmarks is heavily skewed
by the low IPCs of bandwidth-bound benchmarks. On each
graph, we show separate lines for d g�h�i and d e�f , and also
show the effects of two bandwidth capacities. The first,
called limited channels, fixes the number of pins accord-

No. of cores Cores/channel
L2 cache size j�k1l j�m�npo j'k)l j�m�n-o
No L2 139 50 6.6 2.4
64KB 89 41 4.2 1.9
128KB 65 35 3.1 1.7
256KB 42 27 2.0 1.3
512KB 25 19 1.2 1
1MB 13 11 1 1

Table 4. Number of cores and cores/channel.
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Figure 7. Best configurations.

ing to the SIA projections, and divides 4-byte wide, 60-
pin channels up among the processors on the chip (chan-
nel sharing). The second model, called scaled channels,
assumes that the processor pin counts can be scaled to pro-
vide one 60-pin channel per processing core, no matter how
many cores exist on the die.

For the processor-bound benchmarks, the most area-
efficient configuration uses q�r�s�t cores with 64KB L2
caches. Since those benchmarks are largely compute-
bound, the additional cache provides insufficient benefit to
justify the area it consumes. With scaled channels, however,
the organization that achieves peak throughput is q=u�v with
no L2 cache. That organization, however, would contain
140 processing cores, requiring 8400 signal pins.

The cache-sensitive applications show a different result,
with the best configuration using q r�s�t cores with 256KB
L2 caches. Enough of the working sets are contained in the
L2 caches at that point to make larger caches not worth the
additional area consumed. We note that at 256KB and larger
L2 caches, the gap between scaled and finite memory chan-
nels is small. At 70nm, the gap between transistor counts
and pins is much smaller than at 50 or 35nm, allowing the
limited channel designs to have one channel per core for the
larger-cache configurations.

For the bandwidth-bound applications, the configuration
using q r�s�t processors with 256KB caches is best. How-
ever, the difference between q r�s�t and q�u�v chip through-
put is small and constant across all cache sizes, since the ap-
plications are bandwidth-bound at all of the measured cache
sizes for both types of cores. We note that the scaled chan-
nel throughputs are significantly higher than the finite pin
results for the smaller cache sizes, because scaled band-
width removes the bottleneck from the bandwidth-bound
applications. Finally, across all applications, we see that
the q�r�s�t , 256KB L2 combination is best for finite band-
width. However, if each processor could have its own mem-
ory channel, regardless of the number of processors, we
note that the q�u�v , 128KB L2 organization would be best.

4.2 Technology scaling

Figure 8 shows how total throughput scales for each of
the benchmark classes, as technologies shrink. Each graph
shows the total chip throughput obtained by the best perfor-
mance/area design at each technology, for both the limited
and scaled channel organizations.

At 100nm technologies, the limited and scaled band-
width points are similar, since the best configurations
generally have few enough processors to permit one
channel per core, even with a finite number of pins.
However, for smaller technologies, the gap between
bandwidth-constrained and bandwidth-unconstrained per-
formance grows significantly. The actual performance
achieved is related to the bandwidth demands of each appli-
cation class at 35nm: the processor-bound applications sus-
tain over 100 instructions per cycle with the best configura-
tion, the cache-sensitive benchmarks sustain over 50 IPC,
but the bandwidth-constrained applications benefit mini-
mally, improving from about 2 to 3 IPC for the entire
chip. With scaled channels, the ideal configurations result in
much larger numbers of processors with smaller caches, and
the chip-level IPCs are significantly higher, at about 210,
100, and 18 IPC for the processor-bound, cache-sensitive,
and bandwidth-bound benchmarks, respectively.

Table 5 lists the ideal configurations for each of the
points in Figure 8. For limited channels, all of the con-
figurations use out-of-order cores, with the exception of the
bandwidth-bound applications at 100nm. For scaled chan-
nels, small caches are the norm, with 128KB for all classes
except for cache-sensitive, which require 256KB caches at
all technologies.

For constrained bandwidth, however, the required caches
grow as the number of I/O pins per transistor drops. At
35nm, even the processor-bound benchmarks show an ideal
configuration of 256KB (as opposed to 128KB at all other
technologies,) while the cache-sensitive and bandwidth-
bound benchmarks require 512KB and 1MB L2 caches, re-
spectively. These large caches restrict the area available
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Figure 8. Total throughput versus technology.

for more processing logic, curtailing the throughput scaling
severely.

For bandwidth-bound benchmarks, the best number of
processors for limited channels decreases from 28 to 23
when the gate length shrinks from 70nm to 50nm. Addi-
tional area allows larger caches with a big IPC boost per
core, so fewer cores with larger caches give higher total
throughput.

Even for the ideal configurations, the large performance
gap between limited and scaled channel organizations indi-
cates that much of the throughput potential of future CMPs
will go unrealized if solutions are not found to mitigate
these bandwidth restrictions.

5 Extrapolation to server applications

This paper shows how the best allocation of resources are
determined by the characteristics of applications. Given the
key characteristics of any applications, including ILP and
memory access patterns, we could estimate what resources,

Type # cores Cores/ Best config Best config
nm (b/w unlim.) channel limited b/w b/w unlim.
100 PB 18 (18) 1.0 w�xpy�z +128KB w xpy�z +128KB

CS 14 (14) 1.0 w�xpy�z +256KB w xpy�z +256KB
BW 32 (32) 1.8 w {;| +128KB w�{;| +128KB
All 18 (32) 1.0 w�xpy�z +128KB w {;| +128KB

70 PB 36 (36) 1.7 w xpy�z +128KB w xpy�z +128KB

CS 28 (28) 1.3 w�xpy�z +256KB w xpy�z +256KB
BW 28 (66) 1.3 w xpy�z +256KB w�{;| +128KB
All 28 (66) 1.3 w�xpy�z +256KB w {;| +128KB

50 PB 71 (71) 3.0 w�xpy z +128KB w xpy�z +128KB
CS 55 (55) 2.3 w xpy z +256KB w xpy�z +256KB

BW 23 (129) 1.0 w�xpy�z +1MB w {;| +128KB
All 23 (129) 1.0 w xpy�z +1MB w�{;| +128KB

35 PB 111 (144) 4.6 w�xpy�z +256KB w xpy�z +128KB
CS 77 (111) 3.2 w xpy�z +512KB w xpy�z +256KB
BW 47 (262) 1.9 w�xpy�z +1MB w {;| +128KB

All 47 (262) 1.9 w xpy�z +1MB w�{;| +128KB

Table 5. Ideal configurations across technolo-
gies for finite and unconstrained bandwidth.

among computation power, cache, and memory bandwidth,
are most critical. In this section, we briefly discuss the char-
acteristics of database server workloads, and relate them to
the applications described in section 4.

OLTP and DSS workloads are two of the most com-
monly used server workloads. As shown in the previous
sections, the cache system performance, and demands on
memory bandwidth, have a large impact on the balanced al-
location of on-chip resources. Both of the OLTP and DSS
workloads require relatively heavy loads on the memory
system, compared to the computation-bound applications
in our study, but OLTP and DSS have distinct character-
istics [16, 19, 2, 4]. DSS workloads would easily fit into
the cache-sensitive applications in our study. The L1 in-
struction cache miss rates of the DSS workloads are slightly
higher than the average miss rates of our benchmarks, but
the working sets of these workloads can fit easily in 1 or
2MB L2 caches.

OLTP workloads require a more aggressive memory sys-
tem than DSS workloads do. The memory system charac-
teristics of OLTP workloads are similar to the bandwidth-
bound applications in our study. The most considerable
difference is the high L1 instruction cache miss rates of
OLTP workloads, as high as 20% for 8KB cache. How-
ever, the unified L2 cache performance is within the range
of misses/instruction we considered in this paper. Many
of the misses are shown to be conflict misses, so 8-way 2
MB L2 caches could reduce a substantial amount of the L2
misses incurred by a direct mapped 8 MB L2 cache [4].

The operating system effects on the overall performance
of OLTP and DSS workloads are also different from our
benchmarks. In DSS workloads, OS activity is almost neg-
ligible. In OLTP workloads, however, about 20-30% of the
execution time is spent in kernel code. However, the ker-
nel does not dominate the memory system characteristics of
OLTP workloads [2]. Consequently, OLTP and DSS work-
loads are likely to have characteristics similar to applica-
tions presented in this paper.

Since threads in the OLTP and DSS workloads are shar-
ing global data, our independent processes can not model



the effect of data transfers from an L2 cache bank of one
core to another core. As on-chip cache sizes increase, these
remote L2 cache accesses could reduce a large amount of
external DRAM accesses, and have a large impact on the
cache size allocation in future CMPs.

6 Related work

Recent research and development projects have begun to
analyze and design chip-multiprocessor architectures. The
Stanford Hydra project studied the memory hierarchy orga-
nization for a system consisting of four processing cores
and on-chip caches [14]. They further proposed mecha-
nisms for thread-level speculation, first proposed by Sohi
et al. [23], to extract concurrency from sequential applica-
tions and to avoid sequential bottlenecks in parallel applica-
tions. Others, including Krishnan et al. [18] and Steffan et
al. [24] have examined mechanisms to extract thread-level
parallelism from sequential binaries for CMPs. The results
from our study can be used to extend prior work in CMP ar-
chitectures, contributing area and bandwidth models to the
analysis.

In the server arena, the Compaq Piranha research project
targets high throughput by incorporating eight light-weight
single-issue in-order processors with 64KB level-1 instruc-
tion and data caches on a single chip [3]. The proposed
Piranha processor has a 1MB 8-way multi-bank shared L2
cache, and each L2 cache bank has a dedicated Rambus
memory channel. IBM is building actual products with the
Power4 multiprocessor chip, which is optimized for com-
mercial server workloads [10]. The Power4 consists of two
out-of-order processing cores, each with a local L1 cache
and sharing an on-chip level-2 cache. The access time to
the on-chip L2 cache is uniform regardless of the processor
on which the memory reference originates.

Additional work has examined the efficiency of memory
hierarchies and proposed mechanisms to balance processor
and memory system performance. Jouppi et al. studied the
best cache size for two level cache hierarchy of single-core
processors [15]. That research explored the trade-offs be-
tween miss rates and latencies of various cache sizes. Their
result indicated two-level caches perform better than single-
level caches with the same chip area. Farrens et al. studied
the area efficiency of single-chip systems by comparing a
single-core architecture with a large cache to a multi-core
architecture with smaller caches [12]. In their results, they
projected increased area efficiency for multi-core systems
over single core systems with large caches.

Finally, other researchers have detailed the importance of
memory bandwidth in uniprocessor architectures. Burger
et al. studied the bandwidth scaling trends for future su-
perscalar microarchitectures [6]. That study showed that
pin bandwidth would limit performance growth rates of

uniprocessors if they remained on their performance growth
curve. We see similar results, except that our study uses
throughput-oriented CMPs to achieve continued perfor-
mance scaling. In their comparison study of different
DRAM architectures, Cuppu et al. examined the impact of
both latency and bandwidth on application performance [8].
They concluded that as processor and memory speeds con-
tinue to diverge, increasing memory bandwidth will be-
come both critical to performance and more challenging to
achieve.

7 Conclusions

Ideally, highly parallel CMP designs will offer linear
scaling of throughput with increasing transistor count. In
fact, job throughput may emerge as the only way to scale to-
tal chip performance for general-purpose applications, bar-
ring substantial progress and innovation that reverses the di-
minishing returns of current superscalar processor designs.
However, limited off-chip bandwidth will always constrain
the maximum number of cores that can be placed on a chip.
A pressing question for CMP designers concerns the sever-
ity of limited bandwidth. In this study of the CMP design
space, we have observed the following:

} Transistor counts are projected to increase consider-
ably faster than pins, and there will be 45 times fewer
pins per transistor at 35nm than at 180nm. If transis-
tor count increases are used to increase the processor
count, the number of pins per processor will decrease.
Left unaddressed, that growing imbalance will dras-
tically limit the number of cores that can be used in
future technologies, and/or the throughput that can be
obtained from those cores.

} Out-of-order issue cores are more area-efficient than
in-order issue cores. The area ratio of ~������ to ~���� ,
including 256KB L2 caches, is 1.54. Since ~ �����
typically provides more than a 54% performance in-
crease over ~ ��� , the out-of-order cores are more area-
efficient, unless the application in question is band-
width bound.

} For the workloads we studied, the impact of insuf-
ficient bandwidth causes the throughput-optimal L2
cache sizes to grow from 128KB at 100nm, to 256KB
at 70nm, and to 1MB at 50 and 35nm. The channel
contention is sufficiently severe that ~������ cores with
1MB caches are more area-efficient than organizations
with significantly smaller caches.

} Applications show remarkably similar behavior and
performance when measured against the rate of off-
chip accesses. This observation may prove useful for



estimating or modeling overall performance of a CMP
on heterogeneous workloads, as a function of band-
width demand.

The methodology of this study has some weaknesses.
We are using SPEC2000 benchmarks instead of “typi-
cal” server workloads, such as web request processing or
database accesses. While those workloads may have large
data footprints, the results may not be qualitatively differ-
ent, in terms of area efficiency, than those of the SPEC2000
benchmarks. We will measure server workloads in future
work. Other refinements to this study include adjusting
simulation parameters to better reflect the on-chip laten-
cies, off-chip DRAM speeds, and processor core organi-
zations that will likely be specific to each technology, as
opposed to relying on the more conservative 70nm param-
eters. Finally, it is possible that power consumption will
place a harder limit on chip throughput than will memory
bandwidth. Since power distribution and cooling is heav-
ily influenced by packaging technologies and cost, we did
not consider heat dissipation limits in this study, but will
consider it in follow-on work.

As applications become bandwidth bound, and global
wire delays increase, an interesting scenario may arise. It
is likely that monolithic caches cannot be grown past a cer-
tain point in 50 or 35nm technologies, since the wire delays
will make them too slow. It is also likely that, given a ceil-
ing on cache size, off-chip bandwidth will limit the number
of cores. Thus, There may be useless area on the chip which
cannot be used for cache or processing logic, and which per-
forms no function other than as a placeholder for pin area.
That area may be useful to use for compression engines,
or intelligent controllers to manage the caches and memory
channels.

Improved packaging or signaling speeds may permit
greater scaling, and even larger numbers of processors, than
predicted by our study. Reduced DRAM latencies would re-
sult in smaller caches, as would higher-speed pins at future
technologies. If the ideal design point uses small caches,
then the out-of-order cores would need a correspondingly
larger performance advantage over in-order cores to remain
more area efficient. A greatly improved memory subsystem
might result in many more small, in-order cores being most
area efficient.

In the long term, a tremendous number of processors can
be designed on future CMPs to enable scaling of through-
put with technology. However, setting the cache hierarchy,
and number of cores a priori will result in poor performance
across many application classes. Future CMPs would ben-
efit from mechanisms to support adaptation to an applica-
tion’s available parallelism and resource needs. This appli-
cation adaptivity is likely to be an important direction for
research in future CMP designs, and is a key focus of our
work.
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