
Notepad memory: NUMA all the way up

Gabriela Barrantes, Hajime Inoue, Josh Karlin
Department of Computer Science

University of New Mexico
{gbarrant, hinoue, karlinjf}@cs.unm.edu

July 30, 2004

1 Problem: The Memory Wall
Most papers about the memory wall begin with a sentence very
similar to this:

“We all know that the rate of improvement in mi-
croprocessor speed exceeds the rate of improvement
in DRAM memory speed – each is improving ex-
ponentially, but the exponent for microprocessors is
substantially larger than that for DRAMs” [3].

The papers then describe their solution. This is most often a
modified cache structure or a new prefetching scheme. These
are simply variants of the agreed-upon solution to the memory
wall: a large L2 cache.

The current state-of-the-art L2 cache is a beast indeed.1 It
occupies some 60% of the processor,2 and contains a variety
of kludges to decrease its miss rate and miss penalty: victim
caches, hardware prefetching, sub-block placement, and critical-
word first. This solution brings to mind the Ptolomean model of
the solar system: it gave accurate predictions, but it was overly
complex (aside from being wrong).

We believe the memory wall is a problem with a simple and
obvious solution: make memory as fast as the processor. Making
all of memory as fast as processor is too expensive, of course, but
that is not what we propose. Simply make some of memory fast,
and that will be enough.

2 Solution: Notepad memory
We call this memory Notepad memory (NPM), because it is
like scratchpad memory (SPM) but for general-purpose systems.
The last general computer that used SPM was the PDP-10 which
was introduced in 1968 [1]. Notepad memory, together with a
few current trends in operating systems and languages form a
synergistic solution to the memory wall problem.

Our proposal is to eliminate all on-chip cache logic and use
it instead as directly addressable memory. Notepad memory is
this memory, addressed, for example, as the first megabyte of
memory. This is simply a memory address range that runs at
processor speeds.It is up to the software to manage it so it runs
at optimal performance.

We further simplify it by eliminating the virtual memory in-
frastructure. The processor doesn’t support it. Instead, we
place the burden of memory management squarely on the entity

1Yet, remarkably effective. Less than 1% of loads are misses for
many applications [2].

2L2 size based on visual observation of the Pentium M die.

most able to predict its resource needs (no, not the program-
mer) – a higher-level virtual machine.3 Moving applications
from statically-compiled images to emulators and interpreters
is a clear current trend, as exemplified by the increasing pop-
ularity of Java, Microsoft’s Common Language Infrastructure,
Cross Architecture emulators such as Transmeta’s Crusoe, and
even native-to-native emulators such as Valgrind.

We believe our design is better than an L2 cache because it is
simpler. It is the RISC philosophy brought to the memory hier-
archy. We do away with context switches, and with the overhead
and die infastructure required for virtual memory. Our design re-
moves the need for associativity, eviction policies, buffers, and
prefetching strategies. Our processor is both easier to design,
cheaper to produce, and less power-hungry.

The tradeoff is in the runtime, of course. The responsibil-
ities of the L2 cache are now handled by the virtual machine.
The virtual machine does the profiling required to determine the
proper residency of working sets and data in the NPM. The allo-
cation/garbage collection system optimizes locality.

Our solution seems to be a radical departure from modern ar-
chitectural designs, yet it is not. It is merely a simplification
and extension of current trends. We admit there is work to be
done in making such a design feasible. Perhaps the Notepad
memory could emulate cache for those programs unable to run
at acceptable speeds. Much work is also required for com-
piler design and profile-directed optimizations to benefit from
the Notepad design. Perhaps NPM can borrow from current
NUMA designs. Perhaps novel architectural features such as
LOAD history buffers could be used to assist. These features,
instead of hiding the non-uniformity of memory, would aid in
the exploitation of its heterogeneity. The world will always look
non-uniform. We need to get used to it.

References
[1] DECSystem-10/DECSystem-20 Processor Reference Man-

ual AD-H391A-T1, updated 5th edition, June 1982.

[2] John Hennessy and David Patterson.Computer Architec-
ture A Quantitative Approach. Morgan Kaufmann Publish-
ers Inc., 2 edition, 1996.

[3] Wm. A. Wulf and Sally A. McKee. Hitting the memory
wall: Implications of the obvious.Computer Architecture
News, 23(1):20–24, 1995.

3The programmer could also control the NPM directly.


