
An Automatic Hierarchical Data Placement Method ∗

Chengliang Zhang, Yutao Zhong, Chen Ding and Mitsu Ogihara

Computer Science Department
University of Rochester

{zhangchl,ytzhong,cding,ogihara}@cs.rochester.edu

1 The problem

It is well known that the memory of most machines is or-
ganized as a hierarchy. To fully utilize this memory hier-
archy, hierarchical data placement reorganizes program
data into many layers of data blocks to exploit data local-
ity at all memory levels.

The data placement problem can be deemed as a map-
ping problem. The domain is the set of programs, which
is the power set of the set of all possible sequences of data
accesses. The image is all data decompositions. The map-
ping takes a program to its hierarchical data placement; a
uniform address space to a data hierarchy; and sequences
in time to structures in space.

In general, the optimal data placement problem is an
NP-hard problem [1]. However, there are specialized data
placement methods designed for important applications
such as matrix operations, N-body simulation and search
trees. A question arises naturally: can we find the data
placement methods automatically?

We propose to use reference affinity to solve this prob-
lem. Reference affinity measures whether a group of data
is always accessed together during an execution. It gives
a unique and hierarchical partition of the data [3].

2 Our solution

Starting from a trace, which is a sequence of accesses to a
set of data elements, let’s suppose we have reference affin-
ity groups at hand. Depending on how strong the affinities
are, we can divide the reference affinity groups into two
cases: groups having constant distances and those having
variable distances.

For the constant distance case, the construction of the
data hierarchy involves a bottom-up traversal of the affin-
ity hierarchy.

For the variable distance case, simply putting them into
one big group is a bad idea since we can not guarantee
the full group utilization as we do for constant case. In-
stead, we bottom-up partition the probable affinity graph,

∗This work is under review for publication by POPL

where probable affinity measures how frequent a pair of
data elements is accessed together.

3 Justification

From our analysis, the method described above can au-
tomatically give the desirable data hierarchy not only for
the diverse cases reported by past studies—Morton layout
for matrices, Hilbert curve for particles, and van Emde
Boas layout for search trees—but also for important new
cases—random accesses and random walks [2]. Hope-
fully it can establish the subtle link between the reference
affinity model and the data placement problem. These re-
sults advance our understanding of the hierarchical data
placement and open the door for research into more effec-
tive and efficient placement methods for general-purpose
programs. The strong relation between the access pattern
in computation and the spatial relation in data gives us a
basis for improving the programming, compiler, and lan-
guage support for modern computer memory systems.

References

[1] E. Petrank and D. Rawitz. The hardness of cache con-
scious data placement. In Proceedings of ACM Sym-
posium on Principles of Programming Languages,
Portland, Oregon, January 2002.

[2] C. Zhang, Y. Zhong, C. Ding, and M. Ogihara. A
method for hierarchical data placement. Technical
Report TR 845, Department of Computer Science,
University of Rochester, Aug 2004.

[3] Y. Zhong, M. Orlovich, X. Shen, and C. Ding. Ar-
ray regrouping and structure splitting using whole-
program reference affinity. In Proceedings of ACM
SIGPLAN Conference on Programming Language
Design and Implementation, June 2004.

1


