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Abstract. We survey neurosymbolic program synthesis, an emerging research area
at the interface of deep learning and symbolic artificial intelligence. As in classical
machine learning, the goal in neurosymbolic program synthesis is to learn functions
from data. However, these functions are represented as programs that use sym-
bolic primitives, often in conjunction with neural network components, and must,
in some cases, satisfy certain additional behavioral constraints. The programs are
induced using a combination of symbolic search and gradient-based optimization.
In this survey, we categorize the main ways in which symbolic and neural learning
techniques come together in this area. We also showcase the key advantages of the
approach — specifically, greater reliability, interpretability, verifiability, and com-
positionality — over end-to-end deep learning.
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1. Introduction

Research on artificial intelligence (AI) has, for a long time, been split between the sym-
bolists and the connectionists. The older symbolic agenda sought to describe the world
using logic-based rules. In contrast, the machine learning (ML) perspective posited that
patterns can be learned purely from data. In recent years, the ML perspective has tended
to win out — in particular, thanks to breathtaking progress in the field of deep learning.

At the same time, concerns remain about the use of deep learning in real-world prob-
lems [1]. As opaque black boxes, deep neural networks are hard to trust and interpret.
They cannot be easily taught to conform to commonsense knowledge that humans have.
They cannot reuse components in the way traditional software can. Their training can be
unreliable and fail in data-poor environments.

Neurosymbolic machine learning [1,2,3] is an increasingly prominent response to
these concerns. The idea here is to inject human-held symbolic knowledge into a deep
learning process. This knowledge can constrain the learned functions to use certain algo-
rithmic abstractions, and can also serve as a regularizer, allowing more reliable learning.

In particular, this paper focuses on an emerging form of neurosymbolic learning
called neurosymbolic program synthesis (NSP). NSP generalizes classical program syn-
thesis [4], where the goal is to automatically discover programs that are written in a
domain-specific language (DSL) and satisfy a logical specification. These programs are
obtained through the composition of a set of symbolic modules with well-specified in-
terpretations, using combinators that enforce natural requirements at the interface of dif-
ferent components. The program synthesis problem is solved using symbolic methods,
e.g., discrete search and logic-based pruning.



NSP broadens both the problem statement and the solution space of program synthe-
sis. The programs in NSP can be built entirely from symbolic primitives. Often, however,
they use a mix of symbolic code and neural modules. The synthesis problem in NSP is to
induce a program — including the program’s discrete structure, or architecture, as well
as the parameters of its neural components, if any — that minimizes a cost function. In
some cases, the synthesized program is also required to satisfy a set of additional be-
havioral constraints like in classical program synthesis. This synthesis problem is solved
using a variety of strategies that bring together deep learning (including the use of large
language models [5,6]) and symbolic search and reasoning techniques.

2. Motivating Goals

Now we elaborate on the main technical goals of NSP.

Generalization. Generalization is a foundational concept in machine learning. A
learner generalizes if it can predict well on new test cases outside of its training set,
ideally after training with a relatively small number of training samples. A key benefit
of NSP is that neurosymbolic models can potentially generalize better than fully neural
models.

For example, one way to improve the learner’s ability to generalize is through reg-
ularization, which is a way of supplying an inductive bias — a preference order among
hypotheses. Over the years, many regularization schemes for deep learning have been
proposed. NSP introduces a new form of regularization by constraining the syntax and
semantics of hypotheses using specifications (DSLs and behavioral constraints). This
kind of programmatic regularization facilitates the use of domain knowledge. That is, a
human user can encode insights about true solutions to the task in the language specifi-
cation, biasing the learner towards hypotheses that are more likely to generalize.

Programmatic regularization is especially beneficial for procedural tasks, in which
an agent performs sequences of actions realizing complex objectives, and for learning
over structured data types like sequences and trees. In these settings, neural networks
often fail to generalize from a modest number of examples. In contrast, one can often
represent solutions to these tasks as programs that use high-level data and control ab-
stractions. Such a task representation inductively generalizes by construction, for exam-
ple, using looping primitives that operate over data of unbounded length or branching
primitives that can break up a task into subtasks.

The PROPEL [7] approach to reinforcement learning (RL) is an example of this kind
of regularization. The goal in RL is to learn a policy — a function mapping environment
states to actions — for an agent exploring an unknown environment. In contrast to stan-
dard deep RL, a policy in PROPEL is a neurosymbolic program that additively combines
a neural network and a symbolic program. The symbolic program is a composition of
traditional control primitives (e.g., PID controllers) and thus captures expert knowledge.
The neural net gives this program data-derived flexibility. PROPEL’s learning algorithm
simultaneously induces the neural and symbolic parts of the policy from data gathered via
exploration. Compared to using a purely neural policy, this approach has provably lower
variance (and is thus more sample-efficient) [7]. Empirically, policies learned through
PROPEL tend to memorize fewer low-level details of the training environment (compared
to neural policies), and thus generalize better to changes in the environment.
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Figure 1. A sample output of DREAMCODER [8]. The system is tasked with synthesizing programs, written
in a basic functional language, that fit random data simulated from physics equations. In synthesizing these
programs it assembles a library of reusable procedures, including basic vector algebra and common patterns
found in physics equations, which can be transferred to future synthesis tasks.

Modular Learning. Modern high-level programming is inherently modular. Program-
mers commonly break down complex coding tasks into subtasks that are solved using
pre-existing library modules. An important promise of NSP is that it enables such mod-
ularity in learning using high-level programming primitives.

Specifically, NSP can use symbolic primitives to decompose a learning task into a
composition of simpler tasks. These simpler tasks can be represented by either symbolic
or neural modules. The modules can be learned afresh on a new task, or drawn from a
“library” learned on previous tasks.

HOUDINI [9] and DREAMCODER [8] are two well-known frameworks for modular
NSP. Both approaches exploit modularity to transfer knowledge across tasks. Specif-
ically, HOUDINI is trained on a curriculum of tasks and iteratively grows a library of
neural modules during this training. The synthesis algorithm in HOUDINI searches over
programs that compose library modules, functional combinators such as map and fold,
and fresh neural modules, and finds a program that solves the task. After outputting this
program, the newly trained modules are added to the library for use in future tasks. On
a set of tasks involving algorithmic computation over images, this approach outperforms
neural approaches to transfer learning.



(a)

(b)
map (lambda xt .if DistAffine[.0217];−.2785(xt)

then AccAffine[−.0007,.0055,.0051,−.0025];3.7426(xt)

else DistAffine[−.2143];1.822)(xt)) x

Figure 2. (a) Stills from the CRIM13 behavior-tracking dataset for mice. (b) Programmatic classifier for a
“sniff” action, learned using NEAR [10]. DistAffine and AccAffine are functions that first select the parts of the
input that represent distance and acceleration measurements, respectively (the subscripts represent numerical
parameters). The program has an accuracy of 0.87 (vs. 0.89 for a recurrent neural network baseline) and can
be interpreted as: if the distance between two mice is small, they are doing a “sniff”. Otherwise, they are doing
a “sniff” if the difference between their accelerations is small.

DREAMCODER [8] (Figure 1) exploits modularity for transfer learning using sym-
bolic modules. Starting with a set of first- and higher-order symbolic primitives and a
corpus of training problems, DREAMCODER iteratively synthesizes code satisfying each
training specification and mines this code for symbolic “templates” that can be reused
in future tasks. The method is shown to solve a range of problems, including classic in-
ductive programming, symbolic regression, and the design of complex scenes, that are
beyond the scope of purely neural approaches.

Interpretability. Interpretability is an important consideration in many machine learn-
ing applications. However, interpretability is often at odds with learning performance.
Deep neural networks are performant but not interpretable. On the other hand, linear
models and shallow decision trees are interpretable but lack performance on complex
tasks.

The representation of machine learning models as programs is an alternative path
to interpretability. Interpreting a model’s functionality now amounts to reading its code
step by step and understanding the semantics of the underlying language primitives.
Symbolic program analysis techniques can also now be used to algorithmically discover
the model’s properties. At the same time, assuming a suitably sophisticated DSL, even
short programs can express complex computations and perform tasks beyond the reach
of shallow learning models.

For example, the NEAR [10] approach, which we will describe in more detail in
Section 5, was used to discover interpretable models of animal behavior. Figure 2-(a)
shows stills from a video of such behavior for laboratory mice. Figure 2-(b) illustrates a
sample program that describes when two mice are doing a “sniff” action.

Safety Verification. Safety is increasingly a central concern in deep learning research. It
is well-known that deep networks can fail badly on adversarial or unexpected inputs. At
the same time, it is impossible to reason about their correctness using traditional manual



techniques. This makes the deployment of deep networks in safety-critical applications
a fraught endeavor.

Automatic verification of neural networks, using formal methods such as abstract in-
terpretation and SMT-solving, is an increasingly popular response to this challenge. Un-
fortunately, formal methods tend to only be efficient for programs that are small or have
an architecture that enables compositional verification of subproblems. Neural networks
do not satisfy either property. As a result, verification of neural networks has so far only
scaled to fairly small models.

In contrast, approaches based on NSP can use high-level abstractions to facilitate
verification. So far, these methods have been primarily used to learn programmatic poli-
cies for RL agents that provably satisfy invariants such as smoothness [11,7] and stability
[12], and in some cases, more comprehensive functional correctness requirements [12].

Some of these methods, such as PIRL [11] and Viper [12], learn fully symbolic pro-
grams that can be verified using classical formal methods. However, even when learned
programs have neural modules, they can sometimes be soundly approximated by sym-
bolic programs. For example, Zhu et al. [13] and Anderson et al. [14] consider neurosym-
bolic policies of the form “if (ψ(x, f (x)) then f (x) else g(x)”, where g is a neural net-
work and f and ψ are short symbolic expressions. To verify such programs, they abstract
the neural component g with a nondeterministic choice, then automatically verify that
the resulting symbolic program is safe under all instantiations of this choice. If it is, then
the original neurosymbolic program is safe as well.

3. Applications

The technical goals described in Section 2 cut across many real-world applications. Now
we present an incomplete list of some of these applications.

Scientific Discovery. Building learning algorithms that discover new scientific hypothe-
ses and guide experiments is a grand challenge in AI. Such algorithms must respect con-
straints known to hold in the world and produce outputs that scientists can interpret. This
makes NSP a natural fit to this space.

For example, Cranmer et al. [15] proposed a method for symbolic regression — the
automatic discovery of symbolic equations from data — and apply it to a task in cos-
mology (dark matter prediction). Also, some of the NSP efforts mentioned in this survey
were applied in the behavior analysis of laboratory animals. Specifically, NEAR [10],
described in Section 5, was used to classify sequential animal behaviors. The NSP-based
representation learning method [16] we describe in Section 4 as an exemplar of “sym-
bolically guided deep learning” was used for interpretable clustering of such behaviors.
FunSearch [5], an NSP method that uses large language models to direct evolutionary
searches over programs, was utilized to discover witnesses to mathematical statements.
LaSR [6], which augments a FunSearch-like method with a form of LLM-directed con-
cept learning, was used to solve symbolic regression tasks, and in particular, discovered
a new scaling law for LLMs.

Programming Systems. Over the last few years, code generation has emerged as one
of the most successful applications of deep learning. Most approaches here gener-
ate programs token by token using a neural language model. While this strategy has



worked remarkably well for high-level, API-manipulating code that follows idioms
well-represented in publicly available code. However, generating code with novel struc-
ture, interpreting and satisfying sophisticated requirements, and maintaining consistency
within large amounts of generated code remain challenges. Given that symbolic methods
have long been used successfully to rigorously analyze programs and requirements and
verify programs, NSP is a natural way to overcome some of these issues.

Recent work on code generation systems has begun to capitalize on some of this
promise. Specifically, the emerging body of work on language-model agents for pro-
gramming [17,18] and mathematical reasoning [19] do not just generate programs using
a language model, but execute and analyze the resulting code and use the feedback from
these processes to influence generation. As such, they can be seen as an instance of NSP.

Dialog Systems. Task-oriented dialog systems assist users with specific goals through
a natural language interface. As digital assistants, they facilitate travel booking, database
question answering, scheduling, and much more. The key challenge of task-oriented dia-
log is state tracking – identifying the user’s intent and parameters in each dialog act, and
using them to drive the system’s actions. Fundamentally, dialog state is an intermediate
symbolic representation that depends on complex, high-dimensional semantic context,
namely dialog history and the underlying knowledge base or API. Thereby, NSP is a nat-
ural choice for modeling dialog state, successfully applied in many domains. For exam-
ple, Andreas et al. [20] design a calendar assistant in which scheduling actions, dialog
corrections, and exceptions are represented as compositional programs, synthesized by
neurosymbolic models in context.

Process Automation. The field of robotic process automation (RPA) aims to automate
procedural GUI workflows to facilitate business digitization and software testing. RPA
agents interact with Web browsers, GUI applications, and APIs to accomplish the user’s
parameterized tasks. They are typically pretrained for each task using natural language
commands, UI-grounded demonstrations, task completion rewards, or some combination
thereof.

In RPA, the agent’s state and action spaces are enormous – the current screen or
Web page defines the state and the action space includes all possible interactions with
its elements. Learning a robust and interpretable RPA agent is challenging even from
grounded demonstrations as supervision. Instead, recent approaches leverage NSP ideas
and model the agent as a neurosymbolic task program. For example, Srivastava et al.
[21] combine neural language modeling with inductive program synthesis [4] to learn a
generative model of programs that both guarantees consistency with the demonstrations
and optimizes natural language alignment.

Robotics and Control. When designing policies or controllers for autonomous embod-
ied systems, factors such as safety and data efficiency become paramount. For both low-
level control and high-level planning problems, the standard practice has been to lever-
age symbolic domain knowledge (e.g., the governing equations of motion for the sys-
tem, or an automaton representation of the high-level states) to design structured mod-
els that have certifiable guarantees, good generalization, or both (e.g., Verma et al. [7]).
An emerging research direction is to automatically learn or discover the structure of the
symbolic knowledge (e.g., Xu et al. [22]), which can be viewed as an instance of NSP.
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Figure 3. A taxonomy of learning algorithms in NSP. (a) shows neural-guided search algorithms, in which
a neural network, trained using a corpus of programming tasks, is used to guide a search over programs. (b)
illustrates neural relaxation methods, which approximate programs by differentiable neural functions. (c) de-
picts the dual distillation paradigm, in which neural functions are approximated by programs. (d) shows sym-
bolically-guided deep learning, where a deep learning process incorporates synthesized symbolic information.
(e) shows techniques for discovering new DSL components from synthesized programs.

4. Learning Algorithms

Now we sketch the main categories of learning algorithms used to synthesize programs
in NSP. A high-level overview of these approaches is shown in Figure 3.

4.1. Starting Point: Search and Train

Algorithms in NSP build on a substantial prior literature on search-based program syn-
thesis [4]. Common algorithmic strategies in that literature include enumeration, sam-
pling, version-space techniques, and the use of solvers. In top-down enumerative search
[23,24], one repeatedly applies the rules of a DSL’s grammar, starting with the initial
nonterminal, until complete programs are generated. On the way, automatic deduction
is used to recursively decompose the task specification into subgoals, as well as to rule
out choices that provably fail to guarantee the specification. In genetic programming ap-
proaches [25], one maintains a pool of candidate programs and progressively modifies
the pool using crossover and mutation operations. Bottom-up enumeration techniques
[26] also maintain pools of candidates, updating the pool by composing simple programs
into more complex ones.

There is also a body of methods that use stochastic methods, for example,
Metropolis-Hastings sampling [27] and Sequential Monte Carlo, to effectively sample
desirable programs from a space defined by a DSL. Version space methods use a spe-
cialized data structure to represent exponentially sized sets of programs. Solver-driven
search [28] translates the space of programs and the specification into a joint constraint
that is solved using a satisfiability solver.

The simplest learning methods in NSP use these search methods to generate program
architectures and then train the resulting architectures using gradient descent. For such



search-and-train methods to work, the programs must be differentiable in their param-
eters. This assumption does not hold in general but can be realized either by restricting
the DSL or through the continuous relaxation techniques discussed in Section 4.3.

For example, the HOUDINI system [9] uses a search-and-train approach. HOUDINI
uses top-down enumerative search to iterate over strongly-typed, differentiable program
architectures, using a type system to significantly prune the search space on the way.
For each architecture that is fully generated, the parameters of these modules are learned
using gradient descent.

4.2. Neural-Guided Search

The main challenge with search-and-train approaches is scalability. Symbolic methods
can rule out untenable programs using logical techniques. However, they do not give a
way to find optimal architectures and are of limited value when the synthesis problem is
not tightly constrained by logical requirements. As a result, recent research has studied
ways to accelerate the search over programs using neural techniques. Collectively, these
algorithmic techniques form the core of the area of NSP.

The most well-established of these methods are naturally described as neural-guided
search. Here, one learns, from data, neural policies that generate probability distributions
over the space of program architectures. These distributions can then be used to guide a
combinatorial search over programs.

ROBUSTFILL [29], a neural-guided method for programming by example, was an
early exemplar of such a method. ROBUSTFILL uses an encoder-decoder model with an
attention mechanism to learn a distribution over programs conditioned on input-outputs.
Next, it uses a beam search to generate programs from the learned distribution.

The neural models used in ROBUSTFILL were relatively small. Over the last few
years, much larger transformer models trained on large code corpora have been used to
guide program generation. There are many such methods; here we mention one, Alpha-
code [30]. This method solves programming problems using an encoder-decoder neural
network that is pretrained on open-source code corpora available on the internet, then
finetuned on programming competition problems. In addition to the basic neural-guided
program generation strategy, the method uses additional innovations, such as the use of a
neural network to generate candidate inputs for synthesized programs. Programs that ex-
hibit the same behavior on these generated inputs are clustered into equivalence classes;
from each equivalence class, a single member is selected for final use.

Later efforts have used more sophisticated stochastic search methods — in particu-
lar, reinforcement learning (RL) — to discover policies for program synthesis [31,32].
The challenge here is that sampling over programs is difficult, as “bad” programs vastly
outnumber the “good” ones — which means stochastic methods may need massive num-
bers of samples to learn to find good programs. To overcome this problem, Bunel et al.
[31] first train a supervised model for program generation. Then they use the REINFORCE
algorithm to fine-tune the model by sampling programs from the distribution and giving
a positive reward for a program that produces the desired output. Chen et al. [32] use
automated deduction to use automated deduction to prune out subspaces of undesirable
programs as the search progresses, and also to give the learner a signal regarding the kind
of programs to avoid exploring.

Such RL methods have been recently scaled in efforts such as AlphaTensor [33] and
AlphaDev [34]. In particular, AlphaDev studies the problem of discovering, given an



assembly-language program, a low-latency equivalent program. This problem is framed
as an RL task in which the reward depends on both correctness and latency. Innovations
include the use of separate encoders for program and memory, and a “two-headed” RL
value function in which one head is used for latency and the other for correctness.

Recent approaches to program synthesis and mathematical reasoning that combine
language modeling, tool use, and search can also be seen to follow the general paradigm
of neural-guided search. For example, SWE-agent [17] repeatedly invokes a large lan-
guage model (LLM) that is allowed to use symbolic software tools, such as those for
creating and editing code files, navigating software repositories, and executing tests and
other programs. It is shown that this approach substantially exceeds the performance
achieved via state-of-the-art non-interactive language models. Thakur et al. [19] use an
LLM-guided search for formal theorem-proving in frameworks like Lean [35]. The Fun-
Search [5] and LaSR [6] approaches use LLMs to direct an evolutionary search over
programs in the application context of mathematical and scientific discovery.

4.3. Neural relaxations

A different category of methods relaxes the program learning problem into a smooth
optimization problem, then solves using gradient descent. Such a strategy can be valu-
able for two reasons. First, the DSL may permit architectures that use non-differentiable
constructs (e.g., branching or sampling operations). Relaxations allow the parameters
of such programs to be learned using gradient-based methods. Second, in some cases,
one can use smooth relaxations of the discrete landscape of program architectures into a
continuous landscape that allows easier optimization.

Smooth interpretation [36,37] was an early example of program relaxations in pa-
rameter learning. This method defines a smooth operational semantics of programs that
amounts to stochastically perturbing the program’s input and taking the expectation of
the (probabilistic) output on this input. This semantics is now used to produce a signal
for a continuous optimizer.

NEAR [10] points to a different way of using neural relaxations. The goal here is
to find a program that optimally fits a labeled dataset. To meet this goal, NEAR derives
programs top-down. Incomplete programs encountered during this derivation process are
approximated by differentiable neurosymbolic functions that are trained end to end, and
the training loss is used as a heuristic function that can guide informed searches (such as
A∗) over programs. We describe this method in more depth in Section 5.

Cui et al. [38] have extended NEAR into an end-to-end differentiable method for
program synthesis. Building on prior work on differentiable architecture search, this
methods models the entire DSL as a differentiable program. That is, at each node in the
search graph, the categorical choice between different edges out of the node is relaxed
into a trainable softmax. The gradient updates for these softmax weights are guided by a
lower-level signal from neural relaxations.

4.4. Distillation

In the related distillation paradigm [11,7,12,14,13], one starts by relaxing the set of all
programs in the DSL into a differentiable, overparameterized space of functions rep-
resented by a neural network. Because the neural network can be assumed to be more
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Figure 4. The PROPEL algorithm [7]. H is the relaxed space; Π is the space of DSL programs. UpdateF

represents gradient updates; ProjectΠ is the distillation operation.

expressive than the DSL, every program in the DSL has a representation as a parame-
terization of the network. At the same time, the neural representation can be optimized
using gradient-based methods. The learning algorithm uses this fact to learn an optimal
function g in the relaxed space. This function may not have a symbolic representation in
the DSL, hence it is distilled into a DSL program whose behavior is as close as possible
to g.

The PIRL [11] and VIPER [12] methods for “programmatic” reinforcement learning
(RL) were the first distillation approaches to NSP. The goal in both methods is to learn
a policy, expressed in a symbolic DSL, that maximizes an RL agent’s long-term reward.
Solving this problem requires program synthesis as well as computationally complex
planning over a long time horizon. PIRL and VIPER first eliminate the program synthesis
dimension of the problem by learning a relaxed neural policy using a standard deep RL
algorithm. Distilling this policy into a symbolic one is now framed as imitation learning
problem, which does not require planning and can be reduced to a supervised learning
task. This supervised learning problem is solved using an extension of classic program
synthesis techniques.

PROPEL [7] (Figure 4) repeatedly performs distillation and relaxation during train-
ing. The method considers two policy classes: the class of policies representable as pro-
grams in the DSL, and the relaxed class of policies of the form f (x)+g(x), where f (x)
is a neural network and g(x) is a program in the DSL. The discovery of an optimal pro-
grammatic policy is framed as a form of mirror descent. In every learning step, the al-
gorithm first applies a series of gradient updates to the neural component of the current
neurosymbolic policy. Next, using distillation techniques like in PIRL, the algorithm dis-
tills this neurosymbolic policy into a program from the DSL. This program is then lifted
back into the relaxed policy representation by adding a neural term.

Recent work has extended these ideas to the setting of formally verified learning.
Specifically, Zhu et al. [13] give a method similar to PIRL but uses a distillation step that
is guaranteed to produce a formally verified program. Anderson et al. [14] extend PRO-
PEL so that distillation, relaxation, and gradient updates in the relaxed policy space all



preserve the invariant of provable safety. While these methods learn using neurosymbolic
representations, they only verify the distilled purely symbolic programs.

4.5. Symbolically Guided Deep Learning

A fourth category of methods uses synthesized programs to inject human-held knowl-
edge into a deep learning process. In particular, such programs can be used to: (i) aug-
ment latent vector representations learned through neural methods, and (ii) to automati-
cally construct loss functions used to train deep networks.

The neurosymbolic encoders presented by Zhan et al. [16] exemplify the former
strategy. The approach modifies the variational autoencoder (VAE) framework, where a
model comprises an encoder that compresses inputs into latent vectors and a decoder that
decompresses these vectors back. It replaces the neural encoder with a “parallel compo-
sition” of a neural encoder and a symbolic program — i.e., the latent encoding now also
includes some “bits” computed using the program. The neural and symbolic encoders
and trained jointly with the neural decoder in an alternating optimization scheme that
builds on NEAR. The method is shown to build representations that are significantly more
well-factorized than those from standard VAEs, and demonstrated to lead to practical
gains on downstream analysis tasks, such as for behavior classification.

AUTOSWAP, by Tseng et al. [39], is an instance of the second strategy. This method
falls in the paradigm of weakly supervised learning, where labeling functions are used
to automatically annotate data. While labeling functions are traditionally hand-written,
AUTOSWAP uses the NEAR method to automatically discover task-level labeling func-
tions from a small labeled dataset. A key technical idea is the use of a novel structural
diversity cost that allows for the synthesis of diverse sets of LFs. The paper shows that
AUTOSWAP outperforms existing approaches to behavior analysis using only a fraction
of the data.

4.6. Component Discovery

So far, we have discussed methods for learning programs for a predefined language. Now
we proceed to neurosymbolic methods for learning DSLs. In general, a DSL consists
of some universal combinators (e.g., constructs for looping, branching, or processing
basic data structures) and a “library” of reusable modules. These methods induce these
reusable modules — either neural, symbolic, or both — and reuse them in new program
learning tasks.

Learning neural modules. Methods for transferring neural modules start with a “pre-
training” phase in which the module library is constructed, followed by a “deployment”
or test-time phase when this library is used to solve new problems. During the “pre-
training” phase, an inventory of small neural networks are composed to solve training
synthesis tasks in tandem with training the weights of each network. The size of this
bank of neural modules can either be fixed ahead of time — such as in modular meta-
learning [40] and memoised wake-sleep [41] — or grow in size after each training ex-
perience, such as in HOUDINI [9]. At the test time or “deployment” phase, these neural
modules can be used wholesale, with frozen weights [9]. Alternatively, their pretrained
weights can be adapted to to each new task [40]. In either case, they do not need massive
amounts of data to learn at test time.
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Figure 5. Top: syntax trees of two programs sharing common structure, highlighted in orange, from which
DREAMCODER [8] can extract a reused fragment (bottom). The programs may be constructed through the
refactoring of known programs using a set of rewrite rules. Bottom: two actual programs, and the generalized
library abstraction created from their shared fragment.

Learning Symbolic Modules. There are also methods for inducing a library of reusable
symbolic code. The most popular strategy is to compress out reused syntax trees across
a training corpus of programs. DREAMCODER [42] is a canonical example of such an
approach. As outlined before, it is initialized with a set of basic primitives and a corpus of
training tasks. It tackles these training tasks by jointly learning a neural network that can
guide the synthesis of programs that perform these tasks, while also building a library
of reused symbolic functions by mining synthesized programs for templates. The latter
task is performed via a deductive method that uses a set of semantics-preserving rewrite
rules refactor a set of existing programs and identify shared structure. Figure 5 illustrates
a special case.

The subsequent STITCH approach [43] takes on the same problem as DREAM-
CODER, but discovers abstractions via a top-down search rather than a deductive
refactoring-based method. It is shown to be several orders of magnitude faster than
DREAMCODER.

5. A Deeper Dive: NEAR

Now we do a deeper dive into a specific NSP approach, NEAR [10]. Here, we spell
out the problem that the method targets as well as its algorithmic approach. Figure 2
illustrates a sample problem solved using NEAR. See the original paper for more detailed
experimental results.

Problem Statement. NEAR takes on a supervised learning task: given a dataset of la-
beled examples and a cost function, it seeks to find a program in a given DSL that mini-
mizes the cost function.

Let us view a program abstractly as a pair (α,θ), where α is a discrete program
structure (or architecture) and θ is a vector of real-valued parameters. It is assumed
that the architecture α is generated using a context-free grammar [44]. The grammar
starts with an initial nonterminal, then iteratively applies the rules to produce a series of



partial architectures: sentences made from one or more nonterminals and zero or more
terminals. The process continues until there are no nonterminals left, i.e., we have a
complete architecture.

The semantics of the architecture α is given by a function [[α]](x,θ), defined by
rules that are fixed for the DSL. This function is required to be differentiable in θ . Also,
a structural cost is defined for architectures. Let each rule r in the DSL grammar have a
non-negative real cost s(r). The structural cost of α is defined us s(α) = ∑r∈R(α) s(r),
where R(α) is the multiset of rules used to create α . Intuitively, architectures with lower
structural costs are simpler are more human-interpretable.

Now we formalize the learning problem in NEAR. Let us assume an unknown dis-
tribution D(x,y) over inputs x and labels y, and consider the prediction error function
ζ (α,θ) = E(x,y)∼D[1([[α]](x,θ) ̸= y)], where 1 is the indicator function. The learning
problem, then, is to find an architecturally simple program with low prediction error, i.e.,
to solve the optimization problem:

(α∗,θ ∗) = argmin
(α,θ)

(s(α)+ζ (α,θ)). (1)

Program synthesis as Graph Search. NEAR piggybacks an informed search on a pro-
gram derivation graph that models the top-down construction of program architectures.
The nodes in this graph are incomplete architectures; at a node u, the heuristic h(u)
approximates the cost to go, i.e., the additional cost incurred by the best sequence of
program derivation actions that can be taken from this point on.

More precisely, NEAR considers a graph G in which:

• The node set consists of all partial and complete architectures permissible in the
DSL.

• The source node u0 is the empty architecture. Each complete architecture α is a
goal node.

• Edges are directed and capture single-step applications of rules of the DSL. Edges
can be divided into: (i) internal edges (u,u′) between partial architectures u and u′,
and (ii) goal edges (u,α) between partial architecture u and complete architecture
α . An internal edge (u,u′) exists if one can obtain u′ by substituting a nonterminal
in u following a rule of the DSL. A goal edge (u,α) exists if we can complete u
into α by applying a rule of the DSL.

• The cost of an internal edge (u,u′) is given by the structural cost s(r), where r is the
rule used to construct u′ from u. The cost of a goal edge (u,α) is s(r)+ζ (α,θ ∗),
where θ ∗ = argminθ ζ (α,θ) and r is the rule used to construct α from u.

An example of such a graph appears in Figure 6.
Let a completion of a partial architecture u be a (complete) architecture u[α1, . . . ,αk]

obtained by replacing the nonterminals in u by suitably typed architectures αi. Let θu be
the parameters of u and θ be parameters of the αi-s. The cost-to-go at u is now given by:

J(u) = min
α1,...,αk,θu,θ

((s(u[α1, . . . ,αk]− s(u))+ζ (u[α1, . . . ,αk],(θu,θ)) (2)

where the structural cost s(u) is the sum of the costs of the grammatical rules used to
construct u.



Figure 6. An example of program synthesis formulated as graph search [10]. Structural costs are in red, heuris-
tic values in black, prediction errors ζ in blue, O refers to a nonterminal in a partial architecture, and the path
to a goal node returned by A* search with NEAR heuristics is in teal.

Neural Heuristics. To compute a heuristic cost h(u) for a partial architecture u encoun-
tered during search, NEAR substitutes the nonterminals in u with neural networks param-
eterized by ω . These networks are type-correct — for example, if a nonterminal is sup-
posed to generate subexpressions whose inputs are sequences, then the neural network
used in its place is recurrent.

Let us view the neurosymbolic programs resulting from this substitution as tuples
(u,(θu,ω)). One can define a semantics for such programs by extending our DSL’s
semantics, and lift the function ζ to assign costs ζ (u,(θu,ω)) to such programs. The
heuristic cost for u is now given by:

h(u) = min
w,θ

ζ (u,(θu,ω)). (3)

As ζ (u,(θu,ω)) is differentiable in ω and θu, h(u) can be computed using gradient de-
scent.

ε-Admissibility. The neural networks used to guide the search may only form an ap-
proximate relaxation of the space of programs; also, the training of these networks may
not reach global optima. To account for these errors, NEAR considers an approximate
notion of admissibility [45]. For a fixed constant ε > 0, let an ε-admissible heuristic be a
function h∗(u) over architectures such that h∗(u)≤ J(u)+ ε for all u. Now consider any
completion u[α1, . . . ,αk] of an architecture u. As neural networks with adequate capacity
are universal function approximators, there exist parameters ω∗ for the neurosymbolic
program such that for all u,α1, . . . ,αk, θu, and θ :

ζ (u,(θu,ω
∗))≤ ζ (u[α1, . . . ,αk],(θu,θ))+ ε. (4)



Because edges in the search graph have non-negative costs, s(u)≤ s(u[α1, . . . ,αk]), im-
plying:

h(u) ≤ min
α1,...,αk,θu,θ

ζ (u[α1, . . . ,αk],(θu,θ))+ ε

≤ min
α1,...,αk,θu,θ

ζ (u[α1, . . . ,αk],(θu,θ))+(s(u[α1, . . . ,αk])− s(u))+ ε

= J(u)+ ε. (5)

In other words, h(u) is ε-admissible.

6. Conclusion

We have given an overview of NSP, an emerging field at the intersection of deep learning
and program synthesis. We have sketched the main technical goals of the area and listed
some of its applications. We have described a taxonomy of algorithmic approaches in the
area and described NEAR as an exemplar of such approaches.

Limitations and Challenges. NSP-based approaches face two broad challenges. The
first challenge is scalability. Searching over program architectures is a combinatorially
hard problem. When the architectures follow broadly known idioms, neural language
models trained on large code corpora can effectively guide this search. However, the
generation of entirely novel program architectures remains a hard open problem.

The second challenge is specification. NSP assumes that humans can specify do-
main knowledge effectively via DSLs and behavioral constraints. While these specifica-
tions can help with generalization, constructing the “right” specification for a domain is
nontrivial, and unnecessarily restrictive specifications can impede learning performance.

LLMs form a powerful response to both challenges. In the best case, an LLM can
generate entire program architectures step by step, eliminating the need for explicit
search. However, many applications of neurosymbolic programming require the creation
of novel programs, rather than programs well-represented in the pretraining corpus. How-
ever, methods such as Funsearch [5] and LaSR [6] illustrate that the priors and abstrac-
tion capabilities of LLMs can prove useful even when novelty is desirable. As for speci-
fication, LLMs have been successfully used in the autoformalization of informal mathe-
matical statements [46]. One can imagine such autoformalization techniques being more
generally used to construct specifications for NSP.

Collectively, these two limitations imply that there are many tasks — for example,
answering complex, non-synthetic questions over open-domain text, or the discovery
of programmatic policies for real-world, learning-enabled robots — in which NSP is
applicable in principle but not yet in practice. For NSP to reach its full potential, there
needs to be progress on both fronts. Specifically, algorithmic innovations that enable
the generation of more complex program structures are required. Also, more research
must be done on systematizing the inductive bias that different kinds of specifications
introduce, precisely evaluating their benefits with respect to goals such as interpretability
and safety verification, and simplifying or automating the design of such specifications.



Future Horizons. Overall, we are excited about the trajectory of NSP. Data-efficiency,
safety, and interpretability are increasingly salient issues in ML, and these issues open up
a window of opportunity for fresh learning approaches like NSP. As the field further de-
velops methods to address the aforementioned limitations, another opportunity is creat-
ing software frameworks — equivalents of Pytorch [47] or Keras [48] for NSP— that can
accelerate the adoption of these methods. Standardized benchmarks and competitions
that showcase the value of neurosymbolic methods and are also of interest to the broader
AI community would also be of great value. ARC [49], the AI Math Olympiad, and Nat-
ural Plan [50] are three examples of such challenges. Finally, NSP researchers should
prioritize the development of algorithms and infrastructures that enable their methods
to scale. Of particular interest are new methods to parallelize search over program ar-
chitectures and parameters and new interfaces for interacting between neural models (in
particular, large language models) and symbolic tools.
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