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Abstract
A common workflow for developing parallel software is as follows:
1) start with a sequential program, 2) identify subcomputations that
should be converted to parallel tasks, 3) insert synchronization to
achieve the same semantics as the sequential program, and 4) re-
peat steps 2) and 3) as needed to improve performance. Though
this is not the only approach to developing parallel software, it is
sufficiently common to warrant special attention as parallel pro-
gramming becomes ubiquitous. This paper focuses on automating
step 3), which is usually the hardest step for developers who lack
expertise in parallel programming.

Past solutions to the problem of repairing parallel programs
have used static-only or dynamic-only approaches, both of which
incur significant limitations in practice. Static approaches can guar-
antee soundness in many cases but are limited in precision when
analyzing medium or large-scale software that accesses pointer-
based data structures in multiple procedures. Dynamic approaches
are more precise, but their proposed repairs are limited to a sin-
gle input and are not reflected back in the original source program.
In this paper, we introduce a hybrid static+dynamic test-driven ap-
proach to repairing data races in structured parallel programs. Our
approach includes a novel coupling between static and dynamic
analyses. First, we execute the program on a concrete test input and
determine the set of data races for this input dynamically. Next,
we compute a set of finish placements that prevent these races but
also respect the static scoping rules of the program (and can there-
fore be inserted back into the program). Empirical results on stan-
dard benchmarks and student homework submissions from a par-
allel computing course establish the effectiveness of our approach
with respect to compile-time overhead, precision, and performance
of the synthesized code.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
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ing]: Testing and Debugging—Debugging aids; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Algorithms, Languages, Verification

Keywords Data race, Program repair, Structured parallelism,
Async, Finish

1. Introduction
Today, inexpensive multicore processors are ubiquitous and the de-
mand for parallel programming is higher than ever. However, de-
spite advances in parallel programming models, it is widely ac-
knowledged that reasoning about correct synchronization in par-
allel programs requires a level of expertise that many mainstream
programmers lack. Our belief is that domain experts have a good
intuition of which subcomputations can logically execute in paral-
lel, but stumble when adding synchronization between subcompu-
tations. With this premise in mind, we propose a novel approach
to address the parallel programming problem by focusing on the
following workflow: 1) start with a sequential program, 2) iden-
tify subcomputations that should be converted to parallel tasks, and
3) insert synchronization to achieve the same semantics as the se-
quential program while maximizing parallelism. In our approach,
the programmer is responsible for steps 1) and 2). This paper fo-
cuses on automating step 3), which is usually the hardest step for
developers who lack expertise in parallel programming.

Our approach targets structured parallel languages such as
Cilk [2], OpenMP [19], Chapel [4], X10 [6], Habanero Java
(HJ) [3], and Habanero-C [5]. We use a subset of the HJ and X10
languages as an exemplar of structured parallel languages in this
paper. This subset focuses on two core parallel constructs, async
and finish, which are used for task creation and termination.
Consider the Mergesort example in Figure 1. Following steps 1)
and 2), the programmer expressed their intuition that the two re-
cursive calls in lines 4 and 5 can execute in parallel. For step 3),
the algorithms introduced in this paper can determine that a finish
statement is needed around lines 4 and 5 for correctness and maxi-
mal parallelism. Now, consider the Quicksort example in Figure 2.
Again, the programmer expressed their intuition that the two recur-
sive calls in lines 6 and 7 can execute in parallel. While inserting
a finish statement around lines 6 and 7 would be correct, our algo-
rithms can determine that inserting a finish around line 11 is better
because it also prevents data races, yet yields more parallelism than
a finish statement around lines 6 and 7.



1 static void mergesort(int[] A, int M, int N) {

2 if (M < N) {

3 final int mid = M + (N - M) / 2;

4 async mergesort(A, M, mid);

5 async mergesort(A, mid + 1, N);

6 merge(A, M, mid, N);

7 }

8 }

9 ...

10 mergesort(A, 0, size-1); //Call inside main

Figure 1. Mergesort program. A finish statement is needed around
lines 4-5 for correctness and maximal parallelism.

1 static void quicksort(int[] A, int M, int N) {

2 if(M < N) {

3 point p = partition(A, M, N);

4 int I = p.get(0);

5 int J =p.get(1);

6 async quicksort(A, M, J);

7 async quicksort(A, I, N);

8 }

9 }

10 ...

11 quicksort(A, 0, size-1); //Call inside main

Figure 2. Quicksort program. A finish statement is needed around
line 11 for correctness and maximal parallelism.

In this paper, we address the problem of inserting finish state-
ments in parallel programs, where parallelism is expressed using
async statements and (for the sake of generality) the program may
already contain some finish statements inserted by the program-
mer. Our approach determines where additional finish statements
should be inserted to guarantee correctness, with the goal of max-
imizing parallelism. This insertion of finish statements can be
viewed as repairing unsynchronized or under-synchronized paral-
lel programs.

Past solutions to the problem of repairing parallel programs
have used static-only or dynamic-only approaches, both of which
have significant limitations in practice. Static approaches can guar-
antee soundness in many cases but face severe limitations in preci-
sion when analyzing medium or large-scale software that accesses
pointer-based data structures in multiple procedures. Dynamic ap-
proaches are more precise than static analyses, but their proposed
repairs are limited to a single input and are not reflected back in the
original source program. Our method treads the middle ground be-
tween these two classes of approaches. As in dynamic approaches,
we execute the program on a concrete test input and determine the
set of data races for this input dynamically. However, next we com-
pute a set of finish placements that rule out these races but also
respect the static scoping rules of the program, and can therefore
be inserted back into the program.

We offer an evaluation of our method on a range of benchmarks,
including standard benchmarks from the HJ Bench, BOTS, JGF,
and Shootout suites, as well as student homework submissions from
a parallel computing course. The evaluation establishes the effec-
tiveness of our approach with respect to compile-time overhead,
precision, and performance of the synthesized code.

The rest of the paper is organized as follows. In Section 2, we
formulate the problem that we are solving. Sections 3-6 present our
solution. Section 7 describes our experiments. Section 8 discusses
related work. Finally, Section 9 summarizes our conclusions.

2. Problem Statement
A program execution contains a data race when there are two or
more accesses to the same variable, at least one of which is a write,
and the accesses are unordered by either synchronization or pro-
gram order. The primary goal of test-driven repair tool is to ensure
data race freedom1 for the provided inputs. In addition to this, the
repaired programs must be well formed and must provide good per-
formance. Although the tool is applied iteratively for different test
inputs, we define the problem statement for a single iteration of the
tool as follows:

Problem 1. Given a program P and input,  , find a set of program
locations in P where finish statements must be introduced such that

1. The program after insertion of finish statements has no data
races for input,  .

2. The newly inserted finish statements must respect the lexical
scope of the input program.

3. The program after insertion of finish statements must maximize
the available parallelism.

4. The program after insertion of finish statements must have the
same semantics as the serial elision, i.e., the program with no
parallel constructs.

5. The program statements remain in the same order.

The criterion of maximal available parallelism is abstractly de-
fined as follows:

Definition 1. A program is said to have maximal parallelism, if it
has minimum critical path length (CPL), where critical path is the
longest path in the computation graph of the program. Critical path
length could also be defined as the execution time of a program on
a computer with unbounded number of processors.

2.1 Input Language
Our work focuses on a task-parallel programming model based
on terminally-strict [11] parallelism as in Chapel, Habanero Java
(HJ) [3], and X10. Specifically, we focus on the async and finish
parallel constructs in HJ and X10, which are used for task creation
and termination. The statement async { S } creates a child task
S, which may execute asynchronously (before, after or in parallel
with) with respect to the remainder of the parent task. The state-
ment finish { S } causes the parent task to execute S and wait
for the completion of all asynchronous tasks transitively created
inside S.

2.2 Examples
Consider the program shown in Figure 3, where the execution times
for each of the tasks is given. Let us assume that D is dependent on
B and F is dependent on both A and D. Some of the possible finish
placements to satisfy these dependences are given in Figure 4,
along with their critical path lengths. For example ( A B C ) ( D

) E F corresponds to inserting a finish statement which encloses
async A, async B, async C and another finish statement which
encloses async D. The choice of finish placements can have huge
impact on the critical path length and available parallelism. The
number of possible finish placements in such a simple program is
large and finding the best possible finish placement is a complex
problem. The problem becomes harder in the presence of function
calls and nested task parallelism, where asyncs are nested inside
asyncs.

To demonstrate how a finish statement can violate the scope of
the input program, let us consider the program given in Figure 5.

1 Since the repaired program is data-race-free, it has the same semantics for
all memory models.



1 async A( ); //Execution Time = 500

2 async B( ); //Execution Time = 10

3 async C( ); //Execution Time = 10

4 async D( ); //Execution Time = 400

5 async E( ); //Execution Time = 600

6 async F( ); //Execution Time = 500

Figure 3. Async-Finish program with Execution Times. The de-
pendences in the program are B! D, A! F and D! F

( A ) ( B ) C ( D ) E F //CPL = 1510

( A B ) C ( D ) E F //CPL = 1500

( A B C ) ( D ) E F //CPL = 1500

( A ( B ) C D E ) F //CPL = 1110

Figure 4. Few possible finish placements for the program in Fig-
ure 3 and their critical path lengths. Parentheses represent finish
statements

1 if (...) {

2 async { ... } // A1

3 async { x = ... } // A2

4 }

5 async { y = ... } // A3

6 async { ... = x+y } // A4

Figure 5. Async-finish code which demonstrates the scoping is-
sues in finish insertion

There are two data races in this program: A2! A4 and A3! A4.
There are two ways to fix these data races using finish statements:
• Enclose A2 inside a finish statement and A3 inside another finish

statement.
• Enclose A1, A2 and A3 inside a single finish statement.

Note that we cannot insert a new finish statement which encloses
A2 and A3, but does not enclose A1. A program with such finish
statements is not well formed. The finish placement algorithm must
eliminate such cases from the set of potential repairs.

In this paper, we present a tool that computes finish placements
which guarantee data race freedom for the provided inputs, retain
maximal parallelism, and respect scope rules of the input program.

3. Overview
In this section, we present an overview of our approach to test-
driven repair of parallel programs. The overall approach is incre-
mental by design. A single iteration of the tool takes as input an un-
synchronized or under-synchronized parallel program with async
and finish constructs and a test input. It executes the program in the
canonical sequential (depth-first) order with the given input, and
identifies all potential data races by employing a modified version
of the ESP-bags algorithm [20] that builds an extended Dynamic
Program Structure Tree (DPST) [21] for that execution. The output
of the iteration identifies static points in the program where finish
statements should be inserted to cover all data races for that partic-
ular execution.

A high level view of the tool is given in Figure 6. The three main
steps in test-driven repair of data races are:
• Data Race Detection: Our tool executes the program sequen-

tially with the provided input to identify data races in the pro-
gram. To identify data races, the tool uses a modified version of
the ESP-bags algorithm, which is explained in Section 4.

Data$Race$
Detec(on$

Dynamic$
Finish$

Placement$

Sta(c$Finish$
Placement$

Input$
Program$

Test$cases$

Program$with$
extra$
synchroniza(on$

Repair$

Figure 6. High level view of test-driven repair

1 async { ... = x} // A1

2 async { ... = x } // A2

3 async { x = ... } // A3

Figure 7. Async-finish code with multiple data races

While the program executes, the data race detector constructs a
data structure called Scoped Dynamic Program Structure Tree
(S-DPST). S-DPST is an ordered rooted tree that captures the
relationships among the async, finish, scope and step instances
in the program, where a step instance is a maximal sequence
of statement instances in a particular scope with no asyncs and
finishes. Section 4.2 describes the S-DPST in detail.

• Dynamic Finish Placement: Our tool analyzes the S-DPST,
which is annotated with the set of data races, to find the points
in the S-DPST where additional finish statements are required.
Section 5 presents our dynamic finish placement algorithm.

• Static Finish Placement: Our tool maps points in the S-DPST
where additional finish statements are required to points in the
program (AST). Section 6 presents our static finish placement
algorithm.

We iteratively perform Dynamic and Static Finish Placements
until all data races discovered in the program with the test input are
repaired.

4. Data Race Detection
In this section, we present the modified version of ESP-Bags data
race detection algorithm and S-DPST, the principal data structure
for our analysis.

4.1 Multiple Reader-Writer ESP-Bags
Detecting data races is an important step in identifying the synchro-
nization necessary to maintain correctness of parallel programs. In
this work, we use the ESP-bags algorithm [20] to identify data races
in parallel programs with async and finish constructs. The ESP-
bags algorithm detects data races in a given program if and only if
a data race exists. This algorithm performs a sequential depth first
execution of the parallel program with the given input. By monitor-
ing the memory accesses in the sequential execution, the algorithm
identifies data races that may occur in some parallel execution of
the program for that input. If the algorithm reports no data races for
an execution of a program with an input, then no execution of the
program for that input will encounter a data race. The sequential
depth first execution of a parallel program is similar to the execu-
tion of an equivalent sequential program obtained by eliding the
keywords async and finish. The ESP-bags algorithm maintains
an access summary for each memory location monitored for data
races; each location’s access summary requires O(1) space.

The ESP-bags algorithm reports only a subset of all the data
races present in the program for a given input. This limitation is due
to the constraint that ESP-bags keeps track of only one writer and
one reader corresponding to each memory location. Consider the
async-finish code given in Figure 7. There are two Read! Write



data races in this code snippet due to parallel accesses to the global
variable x. The first data race is from the async A1 to the async A3
and the second data race is from the async A2 to the async A3. The
ESP-bags algorithm reports only the data race A1! A3, because it
keeps track of only one of the readers of a memory location. This
data race could be fixed by enclosing A1 inside a finish, but this will
not fix the data race from A2 to A3.

The goal of our tool is to fix all potential data races for a
given input. To achieve this goal, we use a modified version of
the ESP-bags algorithm that keeps track of all readers and writers
for each memory location. In the rest of the paper, we refer to the
original ESP-bags algorithm as Single Reader-Writer ESP-Bags
(SRW ESP-Bags) and the modified version as Multiple Reader-
Writer ESP-Bags (MRW ESP-Bags).

4.2 Scoped Dynamic Program Structure Tree
In this section, we present the principal data structure used for
our analysis: Scoped Dynamic Program Structure Tree (S-DPST).
S-DPST is an extension of Dynamic Program Structure Tree
(DPST) [21], which is used in parallel data race detection for struc-
tured parallel programs.

Definition 2. The Scoped Dynamic Program Structure Tree (S-
DPST) for a given execution is a tree in which all leaves are
step instances, and all interior nodes are async, finish and scope
instances. The parent relation is defined as follows:

• Async instance A is the parent of all async, finish, scope and
step instances directly executed within A.

• Finish instance F is the parent of all async, finish, scope and
step instances directly executed within F.

• Scope instance S is the parent of all async, finish, scope and
step instances directly executed within S.

There is a left-to-right ordering of all S-DPST siblings that
reflects the left-to-right sequencing of computations belonging to
their common parent.

A Scope node represents a scope encountered during the execu-
tion of the program. For instance, a scope node may represent an if
statement, a while loop or a function call. The scope nodes ensures
that the start and end points of a newly introduced finish statement
are in the same scope of the input program (see Section 5). A non
scope node refers to an async, finish or step node.

Step S1 is called the source of a data race involving steps S1 and
S2, if S1 occurs before S2 in the depth first traversal of the S-DPST.
S2 is said to be the sink of the data race. Data races are represented
in S-DPST using directed edges from the step which is the source
of the data race to the step which is the sink of the data race.

Example: Consider the incorrectly synchronized Fibonacci pro-
gram in Figure 8. The program is incorrect because the async state-
ment in line 12 can execute in parallel with line 14, both of them
access the field X.v and one of them is write. Similarly there is a
data race due to the access to field Y.v. Fig. 9 shows a subtree of
S-DPST for the Fibonacci program. Each node is labeled with the
type of the node and a number which indicates the order in which
the node is visited in a depth first traversal of the tree. Async0 cor-
responds to instances of the async statement in line 18, Async1
corresponds to instances of the async in line 12 and Async2 corre-
sponds to instances of the async in line 13. The scope nodes in the
S-DPST are labeled Fib and If, which corresponds to the scope
of the fib function and the if statement in line 6 respectively. The
data races due to the parallel accesses to X.v and Y.v are shown
using the dotted directed edges.

1 static class BoxInteger {

2 public int v;

3 }

4

5 void fib (BoxInteger ret, int n) {

6 if ( n < 2) {

7 ret.v = n;

8 return;

9 }

10 final BoxInteger X = new BoxInteger();

11 final BoxInteger Y = new BoxInteger();

12 async fib (X, n-1); // Async1

13 async fib (Y, n-2); // Async2

14 ret.v = X.v + Y.v;

15 }

16 public static void main (String[] args) {

17 ....

18 async fib(result, 3); // Async0

19 ....

20 }

Figure 8. Incorrectly synchronized Fibonacci program

Fib:1&

Step:2& Async1:3& Async2:15& Step:19&

Fib:4& Fib:16&

Step:5& Async1:6& Async2:10& Step:14& If:17&

Fib:7& Fib:11&

If:8& If:12&

Step:9& Step:13&

Step:18&

Async0:0&
Tree&edge&

Data&race&

Figure 9. Subtree of S-DPST for Fibonacci

Definition 3. A non-scope child of a node p in S-DPST is a node
c, which is a direct descendent of p with only scope nodes along
the path from p to c.

Definition 4. The non-scope least common ancestor (NS-LCA) of
two nodes ni and nj in S-DPST is a node lij such that if l

0
ij is the

Least Common Ancestor (LCA) of ni and nj in the S-DPST, then
lij is the first non-scope node along the path from l

0
ij to the root of

the S-DPST.

Definition 5. The non-scope least common ancestor (NS-LCA) of
a data race, D in S-DPST is the NS-LCA of ni and nj , where ni is
the source and nj is the sink of the data race, D.

In Figure 9, Step:5, Async1:6, Async2:10 and Step:14 are the
non-scope children of the node Async1:3. The NS-LCA of Step:9
and Step:14 is Async1:3.



Async1:3&

Fib:4&

Step:5& Async1:6& Async2:10& Step:14&

Fib:7& Fib:11&

If:8& If:12&

Step:9& Step:13&

Figure 10. A subtree rooted at NS-LCA for Fibonacci

Step:5& Async1:6& Async2:10& Step:14&

Figure 11. Dependence graph constructed from the subtree in Fig-
ure 10

5. Dynamic Finish Placement
In this section, we present the algorithm for dynamic finish place-
ment, which involves two main steps: dependence graph construc-
tion which is presented in Section 5.1 and the application of a dy-
namic programming algorithm on the dependence graph, which is
presented in Section 5.2.

5.1 Dependence Graph Construction
In this section we present the method used to construct a depen-
dence graph from the subtree rooted at a NS-LCA. Consider the
subtree of the S-DPST rooted at L, where L is the NS-LCA of
each of the data races D1..Dk. Let C1..Cn be the non-scope chil-
dren of the node L in the S-DPST. The graph we construct has n
nodes, where each node corresponds to a non-scope child of L. The
dependence graph has k edges, where each edge corresponds to a
data race. The source of the edge corresponding to data race, Di is
the non-scope child of L, which is the ancestor of the source of Di.
Similarly the sink of the edge corresponding to data race, Di is the
non-scope child of L, which is the ancestor of the sink of Di.

Example: The S-DPST in Figure 9 has two NS-LCAs: Async0:0
and Async1:3. We demonstrate the dependence graph construction
on the subtree rooted at Async1:3, which is given in Figure 10. Fig-
ure 11 shows the dependence graph constructed using the method
presented above. The nodes in the graph are the non-scope children
of Async1:3 and the edges represent the data races between their
descendent steps.

5.2 Algorithm
In this section, we present the core algorithm of our test-driven re-
pair tool. The algorithm takes as input the dependence graph con-
structed from the subtree rooted at a NS-LCA by the method pre-
sented in Section 5.1 and finds the set of finishes needed to fix the
data races represented in the dependence graph. The problem of
optimal finish placement could be stated formally as follows: Let
G = (V,E) be a directed acyclic graph where V = {1..n} is the
set of vertices and E = {(x1, y1)..(xm, ym)} is the set of edges.
The set of edges, E satisfy the property 8(xi, yi) 2 E, xi < yi.
The execution time of each vertex i is represented as ti. We are in-

Algorithm 1 Dynamic finish placement algorithm
Input: Graph, G and Execution time t[1..n] of nodes 1..n in G
Output: Opt, Partition, Finish arrays

1: for i = 1 to n do
2: Opt[i][i] t[i]
3: Partition[i][i] i
4: Finish[i][i] false
5: if i is an async node then
6: EST [i+ 1, i..i] = 0

7: else
8: EST [i+ 1, i..i] = t[i]
9: end if

10: end for
11: for s = 2 to n do
12: for i = 1 to n� s+ 1 do
13: j  i+ s� 1

14: for k = i to j � 1 do
15: Cmin = +1
16: if succ(i..k) \ {k + 1..j} = ; then
17: c max(Opt[i][k],
18: EST [k + 1, i..k] +Opt[k + 1][j])
19: f  false
20: e EST [k+1, i..k] +EST [j +1, k+1..j]
21: else if VALID(i, k) then
22: c Opt[i][k] +Opt[k + 1][j]
23: f  true
24: e Opt[i][k] + EST [j + 1, k + 1..j]
25: end if
26: if c < Cmin then
27: Cmin  c
28: p k
29: finish f
30: est e
31: end if
32: end for
33: end for
34: Opt[i][j] Cmin

35: Partition[i][j] p
36: Finish[i][j] finish
37: EST [j + 1, i..j] est
38: end for

terested in finding a set of points in the graph, where finish nodes
need to be introduced such that it resolves all the data races and
minimizes the execution time of G. The set of program points
where finish nodes need to be introduced is represented using a
set of ordered pairs, FinishSet = {(s1, e1)..(sn, en)}, where
each (si, ei) 2 FinishSet represents a finish block which en-
closes the set of vertices si..ei. To summarize, we need to compute
FinishSet, such that

• if (i, j) 2 E, 9(s, e) 2 FinishSet where 1  s  i  e < j

• COST (G) = maxi=1,n(EST (i, 1..i�1)+ ti), is minimized

where EST (j, i..j�1) represents the earliest start time of the node
j with respect to the nodes i..j � 1. The quantity EST (i, 1..i �
1) + ti represents the earliest completion time of the node i.

This problem exhibits optimal substructure. That is, the solution
to the problem could be expressed in terms of solutions to smaller
subproblems as shown in Figure 12. OPT (i, j) represents the
optimal cost for the subproblem involving the nodes i..j and the
corresponding edges. succ(i) represents the set of nodes to which
there is an edge from i, and succ(i..k) = succ(i)[succ(i+1)..[
succ(k). OPT (i, j) is computed from two sub problems i..k and



OPT (i, j) = min

ik<j

(
OPT (i, k) +OPT (k + 1, j) succ(i..k) \ {k + 1..j} 6= ;
max(OPT (i, k), EST (k + 1, i..k) +OPT (k + 1, j)) otherwise

(1)

Figure 12. Optimal substructure of finish placement

EST (i+ 1, i..i) =

(
0 if i is an async
ti otherwise

(2)

EST (i, j) =

(
OPT (i, k) + EST (k + 1, i..k) succ(i..k) \ {k + 1..j} 6= ;
EST (k + 1, i..k) + EST (j + 1, k + 1..j) otherwise

k is the optimal partitioning point for i..j (3)

Figure 13. Earliest start time computation

Algorithm 2 Checks the validity of a finish placement
1: procedure VALIDHELP(node1, node2, left, right)
2: lca1l = LCA(node1, left)
3: lca12 = LCA(node1, node2)
4: lca2r = LCA(node2, right)
5: d1l = lca1l.depth
6: d12 = lca12.depth
7: d2r = lca2r.depth
8: if (d1l > d12) _ (d2r > d12) then
9: return false

10: end if
11: return true
12: end procedure
13: procedure VALID(i, j)
14: return VALIDHELP(node[i], node[j], node[i � 1],

node[j + 1])
15: end procedure

k+1..j. The value of k is chosen such that it gives us the minimum
value of OPT (i, j). We refer to k as the optimal partitioning
point for the problem i..j. The possible partitioning points are
i, i + 1, ..j � 1. The first case represents where there are edges
from the first partition (i..k) to the second partition (k + 1..j).
In this case, a finish is required around the first partition to satisfy
the dependence from the first partition to the second partition. The
second case represents the case where there are no edges from the
first partition to the second partition. In this case a finish is not
required. Figure 13 shows the computation of EST .

Algorithm 1 shows the dynamic programming method used to
compute the optimal finish placement. Opt[i][j] holds optimal cost
for the subproblem i..j. To help us keep track of how to construct
an optimal solution, we save the optimal partitioning point of i..j
in Partition[i][j]. Finish[i][j] keeps track of whether a finish is
required around the block i..k.

The loop in lines 14-32 iterates through each of the possible
partitioning points and finds the optimal one. Lines 16-20 handle
the case where a finish is not required and lines 21-25 handle
the case where a finish is required. Note that it considers only
values of k for which (i, k) has a valid static finish placement.
Procedure VALID(i, j) in Algorithm 2 checks the validity of a
finish placement. (i, j) is a valid finish placement, only if there
exists a point in the DPST where we can introduce a finish node,
whose descendents include the nodes i..j, but do not include nodes
i�1 or j+1. The array node used in VALID contains all the nodes
in the dependence graph, ordered from left to right.

Algorithm 3 Find the set of finishes from the output of Algorithm 1
Input: Partition, Finish
Output: Set of finishes

1: procedure FIND(begin, end)
2: if begin = end then
3: return ;
4: end if
5: p = Partition[begin][end]
6: left = FIND(begin, p)
7: right = FIND(p, end)
8: if Finish[begin][end] = true then
9: return {(begin, p)} [ left [ right

10: else
11: return left [ right
12: end if
13: end procedure
14: return FIND(1, n)

Algorithm 1 computes the optimal solution in O(n3 ⇥ d)
time, by taking advantage of the overlapping-subproblems prop-
erty, where d represents the height of the subtree rooted at LCA.
There are only ⇥(n2

) different subproblems in total. The solution
for each of these subproblems is computed once in O(n⇥ d) time.

Algorithm 1 computes the optimal cost for a finish placement,
which satisfies all the dependences in the dependence graph. It
does not directly show the partitioning points. This information
can be easily determined from the arrays Partition and Finish.
1..(Partition[1][n]) and (Partition[1][n] + 1)..n are the two
subproblems used to compute the optimal solution for 1..n. The
value of Finish[1][n] determines whether a finish is required
around 1..Partition[1][n]. The finish placements for all the sub-
problems can be computed recursively as presented in Algorithm 3.

The next step is to find the exact location in the S-DPST where
the finish nodes must be inserted. For each (i, j) 2 FinishSet,
this is found by a bottom-up traversal of the S-DPST, where we
find the highest node in the S-DPST where we can introduce a new
finish node as the ancestor of i..j, but is not an ancestor of i� 1

or j + 1.

Example: Lets now consider the application of Algorithm 1 on the
dependence graph in Figure 11. The set of vertices for the graph
is V = {1, 2, 3, 4} and the set of edges is E = {(2, 4), (3, 4)},
where vertex 1 refers to Step:5, 2 refers to Async1:6, 3 refers to
Async2:10 and 4 refers to Step:14. Lets assume t1 = 5, t2 =

20, t3 = 15, t4 = 5. The application of Algorithm 1 would infer a
finish placement of {(2, 3)}. Figure 14 shows the new subtree after
the insertion of finish node.
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Figure 14. Subtree in Figure 10 after inserting finish

5.3 Correctness and Optimality
The dependence graph constructed using the method in Section 5.1
models the data races as dependences between the children of
the NS-LCA. The dynamic programming algorithm given in Sec-
tion 5.2 ensures that new finish nodes are inserted such that the
source and sink of a data race may not happen in parallel.

Theorem 1. Consider two leaf nodes S1 and S2 in a S-DPST,
where S1 6= S2 and S1 is to the left of S2. Let N be the node denoting
the non-scope least common ancestor of S1 and S2. Let node A be
the ancestor of S1 that is the non-scope child of N. Then, S1 and S2
can execute in parallel if and only if A is an async node.

Theorem 1 is an extension of a result from [21] which gives the
necessary and sufficient condition for 2 steps to execute in parallel.
To resolve a data race between 2 steps S1 and S2, we need to
introduce a finish node, F in the S-DPST, such that
• F is the non-scope child of the NS-LCA, N of S1 and S2
• F is an ancestor of S1 but not an ancestor of S2.

Theorem 2. Consider a node L in S-DPST. Let G = (V,E) be
a directed acyclic graph (DAG) in which nodes V = {1, .., n}
represent the dynamic children of L and E represent the set of data
races whose dynamic LCA is L. Algorithm 1 finds an optimal set of
finish placement which resolves all the data races represented by
E.

Proof. By induction on s in Algorithm 1. At the start of s iteration
of the loop in line 11-36, optimal solutions for all subproblems
of size s � 1 have been computed. The next iteration of the loop
computes the optimal solutions for all subproblems of size s.

6. Static Finish Placement
In this section, we present the algorithm for finding a static finish
placement from the dynamic finish placements computed using the
algorithms presented in Section 5.

6.1 Algorithm
Dynamic finish placement algorithm finds the finish placements re-
quired to resolve the data races at a single NS-LCA. The choice of
finish placements at a single NS-LCA can have impact on the rest
of S-DPST and the input program. The static finish placement algo-
rithm handles these issues, by propagating these finish placements
to the rest of the S-DPST and the input program. The complete
steps in static finish placement algorithm are given below.

1 static class BoxInteger {

2 public int v;

3 }

4

5 void fib (BoxInteger ret, int n) {

6 if ( n < 2) {

7 ret.v = n;

8 return;

9 }

10 final BoxInteger X = new BoxInteger();

11 final BoxInteger Y = new BoxInteger();

12 finish { // Newly inserted finish

13 async fib (X, n-1); // Async1

14 async fib (Y, n-2); // Async2

15 }

16 ret.v = X.v + Y.v;

17 }

18 ....

20 async fib(3); // Async0

Figure 15. Fibonacci program from Figure 8 after finish insertion

1. Find the NS-LCA of the source and sink of each of the data
races in the S-DPST

2. Group all the data races which have a common NS-LCA
3. For each unique NS-LCA , N

(a) Reduce the subtree rooted at N to a DAG as described in
Section 5.1.

(b) Find the set of finish nodes needed to fix the data races with
NS-LCA, N using the dynamic programming algorithm
presented in Section 5.2.

(c) Find the locations in the S-DPST where a finish needs to be
inserted by a bottom-up traversal.

(d) Insert the finish statements in the input program and update
the S-DPST with the new finish nodes

(e) Remove the data races which are fixed by the insertion of
the finish nodes.

(f) Update the data races for which the NS-LCA have changed
due to the insertion of new finish nodes.

The algorithm iterates through each of the unique NS-LCAs and
finds the set of dynamic finish placements needed to fix the data
races. These finish placements are then mapped to the input pro-
gram. The S-DPST is then updated with the new set of finish state-
ments. Note that a finish placement at one NS-LCA may lead to
the insertion of finish nodes in subtrees rooted at other NS-LCAs.
At the termination of the algorithm, we have a program free of data
races for the given input.

Example: The subtree rooted at Async1:3 after dynamic finish
placement is shown in Figure 14. The finish placement in this
subtree are then propagated to the rest of the S-DPST. This will
introduce another Finish node as the child of Fib:1 and as the parent
of Async1:3 and Async2:15 in Figure 9. At this point all the data
races have been fixed and the program with the newly introduced
finish statement is given in Figure 15.

6.2 Correctness & Conditions for Optimality
The static finish placement algorithm iterates through each unique
NS-LCA and finds the finish placement for a subset of all the data
races, instead of finding a finish placement which covers all the



data races. The following theorem gives the intuition behind this
approach.

Theorem 3. Consider a program P with n data races {D1,..,Dn}.
Let {L1, .., Ln} be the non-scope least common ancestors (NS-
LCA) of the nodes corresponding to the steps involved in the data
race in the S-DPST. A finish node in the S-DPST which resolves a
data race Di may resolve a data race Dj only if Li = Lj .

From Theorem 3, it follows that the problem of global finish
placement could be solved by grouping data races by their NS-LCA
and solving the problem locally. If the subproblems at different
NS-LCAs are non-overlapping this leads to an optimal solution.
If the subproblems are overlapping, the decisions made in the
solution of earlier subproblems may lead to non-optimal solutions
for later subproblems. In most real world programs, we observed
that the solutions required at different NS-LCAs are identical or
non-overlapping, which leads to a global optimal solution.

7. Experimental Results
In this section, we present experimental results for our test-driven
repair tool. The different components of the tool shown in Fig-
ure 6 were implemented as follows. Programs were instrumented
for race detection, S-DPST construction and computation of execu-
tion time of steps during a byte-level transformation pass on HJ’s
Parallel Intermediate Representation (PIR) [18]. The data race de-
tector (modified version of ESP-Bags) was implemented as a Java
library for detecting data races in HJ programs containing async
and finish constructs, and generating trace files containing all the
data races detected. The dynamic and static finish placement algo-
rithms were implemented as subsequent compiler passes in the HJ
compiler, that read the trace files generated by the data race detec-
tor, update the PIR representation of the program, and then output
the source code positions where additional finish constructs should
be inserted.

Our experiments were conducted on a 12-core Intel Westmere
2.83 GHz system with 48 GB memory, running Red Hat Enterprise
Linux Server release 6.2, and Sun Hotspot JDK 1.7. To reduce
the impact of JIT compilation, garbage collection and other JVM
services, we report the mean execution time measured in 30 runs
repeated in the same JVM instance for each data point.

We evaluated the repair tool on a suite of 12 task-parallel bench-
marks listed in Table 1. The fourth column of Table 1 shows the in-
put sizes used for repair mode (which includes data race detection
and S-DPST construction). The fifth column shows the input size
used for performance evaluation of the repaired programs.

7.1 Repairing Programs
To evaluate our tool, we performed the following test. We removed
all finish statements from the benchmarks in Table 1, and then
ran the repair tool on each of the resulting buggy programs. For
these programs, a single iteration of the tool with a single test case
(input size shown in column 4 of Table 1) was sufficient to obtain a
repair that satisfied all task dependences. Further, the tool’s repair
(insertion of finish statements) resulted in parallel performance that
was almost identical to that of the original benchmark in each case.
Figure 16 shows the execution times for the sequential, original
parallel, and repaired parallel versions of each benchmark when
executed on 12 cores. A visual inspection confirmed that the tool
was able to insert finish statements so as to obtain comparable
parallelism to that created by the experts who wrote the original
benchmarks.

7.2 Time for Program Repair
Table 2 shows the time to repair each of the programs using input
sizes given in column 4 of Table 1. HJ-Seq is the sequential runtime

of the benchmarks. The third column shows the time taken for
data race detection and S-DPST construction. The fourth and fifth
column gives the number of S-DPST nodes and the number of data
races reported by MRW ESP-Bags algorithm respectively. Repair
time is the time taken for static and dynamic finish placements.
We observed that, as the number of S-DPST nodes and the number
of data races increases, the time taken for the program repair also
increases. This is because the time to repair is dominated by the
time taken to read the trace files generated by data race detector and
building the S-DPST. Although the worst-case time complexity for
dynamic finish placement is O(n3 ⇥ d), the time taken in practice
is very small because n and d are small in practice.

7.3 Comparison of SRW and MRW ESP-Bags
In this section, we compare the overheads and results produced
by the two data race detectors. Our tool uses the MRW ESP-Bags
algorithm for data race detection by default. This guarantees that all
data races are reported in a single run, for a given test case. Using
the SRW ESP-Bags algorithm may require multiple iterations of
the tool for the same test case to ensure that the program does
not contain data races that were not identified and fixed in a prior
iteration. For the benchmarks used in this paper, only two SRW
iterations were needed in each case (one for repair, and one to
confirm that no data races remain). The main reason to consider
SRW is that each SRW iteration may generate smaller trace files
than that generated by a single MRW run, and smaller trace files
directly result in a smaller memory footprint and execution time
for repair. This hypothesis is confirmed in Table 4, which compares
the number of data races detected by a single run of the SRW and
MRW algorithms.

Table 3 compares the total repair time for the MRW and SRW
algorithms (including two runs in the SRW case). We see that the
execution times are comparable in many cases, but there is a big
difference for mergesort for which MRW’s repair time is more than
4⇥ slower than SRW’s repair time. This can be explained by the
large absolute number of reported data races for the MRW algo-
rithm in Table 4, for the mergesort benchmark. The time for syn-
thesizing a correct program from MRW race reports for mergesort
is higher due to the cost of reading the large traces and adding the
race edges to our internal representation.

7.4 Student Homework Evaluation
We also used our repair tool to evaluate student homework submis-
sions as part of an undergraduate course on parallel computing. The
assignment for the students was to perform a manual repair on a
parallel quicksort program i.e., to insert finish statements with max-
imal parallelism while ensuring that no data races remain. The ini-
tial version of the program contained async statements, but no fin-
ish statements. We then evaluated the student submissions against
the finish statements automatically generated by the tool. Out of 59
student submissions, 5 submissions still had data races, 29 submis-
sions were over-synchronized (i.e., had reduced parallelism), and
25 submissions matched the output from our repair tool. We be-
lieve that our repair tool will be a valuable aid for future courses
on parallel programming, especially in on-line offerings where au-
tomated feedback is critical to improve the learning experience for
students.

8. Related Work
Program repair and synthesis The last decade has seen much
activity in repair and synthesis of programs, including concurrent
programs. Vechev, Yahav, and Yorsh [25] use abstract interpreta-
tion to analyze atomicity violations and abstraction-guided synthe-
sis to introduce minimal critical regions into a program to elim-
inate atomicity violations by restricting potential interleavings. A



Source Benchmark Description Input Size Input Size
(Repair) (Performance)

HJ Bench Fibonacci Compute nth Fibonacci number 16 40
Quicksort Quicksort 1,000 100,000,000
Mergesort Mergesort 1,000 100,000,000
Spanning Tree Compute spanning tree of an undirected graph nodes = 200 , neighbors = 4 nodes = 1,000,000 , neighbors = 100

BOTS Nqueens N Queens problem 6 13
JGF Series Fourier coefficient analysis rows = 25 rows=100,000

SOR Successive over-relaxation size =100, iters = 1 size = 6,000, iters = 100
Crypt IDEA encryption 3,000 50,000,000
Sparse Sparse matrix multiplication 100 2,500,000
LUFact LU Factorization 25⇥ 25 1000⇥ 1000

Shootout FannKuch Indexed-access to tiny integer-sequence 6 12
Mandelbrot Generate Mandelbrot set portable bitmap 50 10,000

Table 1. List of Benchmarks Evaluated

Figure 16. Average execution times in milliseconds and 95% confidence interval of 30 runs for sequential, original parallel, and repaired
parallel versions, for “Performance” input size. Parallel versions were run on 12 cores.

prototype based on this approach has been demonstrated on pro-
gram fragments consisting of tens of lines. Cerny et al. [24] present
a method for using a performance model to guide refinement of
a non-deterministic partial program into one that is both race and
deadlock free. They use manually derived abstractions of programs
and the SPIN model checker to reason about transitions. This sys-
tem was also applied to tens of lines of code. Raychev et al. [22]
used abstract interpretation to compute an over-approximation of
the possible program behaviors. If the over-approximation is not
free of conflicts, the algorithm synthesizes a repair that enforces
conflict freedom. Solar-Lezama et al. [23] synthesizes concurrent
data structures from high-level “sketches”.

The most closely related work on concurrent program repair is
described in a pair of papers by Jin et al. [12, 13]. In a 2011 pa-
per [12], they describe AFix—a system for detection and repair
of concurrency bugs resulting from single-variable atomicity viola-

tions. Their system detects atomicity violations, designs a repair by
adding a critical section protected by a lock to prevent problematic
interleavings. A 2012 paper [13] describes CFix—a more compre-
hensive system for detecting and repairing several kinds of concur-
rency bugs, including atomicity violations, ordering violations, data
races, and def-use errors. CFix relies on several different existing
bug detectors to detect different types of concurrency bugs. They
fix bugs by adding ordering and/or mutual exclusion. With respect
to [12] and [13], which avoids atomicity violations by ordering ac-
cesses: we add finish constructs which (a) eliminate the observed
races, and (b) ensure that the semantics of the accesses in the paral-
lel program is the same as in the sequential version. [12] and [13]
merely ensure that the accesses aren’t concurrent by adding mutual
exclusion or pairwise ordering.

Kelk et al. uses a combination of genetic algorithms and pro-
gram optimization to automatically repair concurrent Java pro-



Benchmark HJ-Seq Data Race Detection Time Number of Number of Repair Time
(millisecs) (millisecs) S-DPST Nodes Data Races (secs)

Fibonacci 17.41 229.03 17,568 3,192 4.77
Quicksort 11.01 554.50 54,857 17,727 21.35
Mergesort 6.08 827.04 120,688 424,436 647.43
Spanning Tree 9.15 360.00 37,410 3,261 11.21
Nqueens 2.67 283.75 32,434 4 6.02
Series 37.07 559.30 98,226 6 45.30
SOR 26.01 275.11 59,422 19,110 21.11
Crypt 32.10 603.05 30,596 3,375 5.44
Sparse 13.52 223.02 46,561 260 15.21
LUFact 13.01 299.32 24,430 99,563 56.27
FannKuch 3.41 2,853.18 19,785 7 3.09
Mandelbrot 10.62 430.45 271,354 100 55.66

Table 2. Time for Program Repair. Input size: Repair

Benchmark Data Race Detection Time Repair Time Second Data Race Detection Total Time
(millisecs) (secs) (millisecs) (secs)

SRW MRW SRW MRW SRW Only SRW MRW
Fibonacci 213.13 229.03 4.71 4.77 170.12 5.09 5.00
Quicksort 411.52 554.50 21.11 21.35 386.35 21.91 21.90
Mergesort 623.12 827.04 155.91 647.43 557.13 157.09 648.26
Spanning Tree 291.00 360.00 10.03 11.21 138.67 10.46 11.57
Nqueens 255.12 283.75 6.11 6.02 253.44 6.62 6.30
Series 560.03 559.30 45.03 45.30 526.47 46.12 45.86
SOR 220.31 275.11 21.01 21.11 198.05 21.43 21.39
Crypt 374.52 603.05 5.36 5.44 314.15 6.05 6.04
Sparse 171.11 223.02 15.11 15.21 170.21 15.45 15.43
LUFact 216.21 299.32 56.41 56.27 157.63 56.78 56.57
FannKuch 203.51 2,853.18 3.06 3.09 204.23 3.47 5.94
Mandelbrot 426.31 430.45 55.13 55.66 382.36 55.94 56.09

Table 3. Comparison of SRW ESP-Bags and MRW ESP-Bags. Input size: Repair

Benchmark SRW ESP-Bags MRW ESP-Bags
Fibonacci 3,192 3,192
Quicksort 1,780 17,727
Mergesort 39,684 424,436
Spanning Tree 397 3,261
Nqueens 4 4
Series 6 6
SOR 19,110 19,110
Crypt 3,375 3,375
Sparse 100 260
LUFact 99,563 99,563
FannKuch 7 7
Mandelbrot 100 100

Table 4. Number of data races detected by SRW ESP-Bags and
MRW ESP-Bags. Input size: Repair

grams [14]. The usefulness of genetic algorithms in program repair
was previously demonstrated by Le Goues et al. [9]. Other relevant
program repair Griesmayer et al. [10], which uses a method based
on model checking to repair boolean programs, and Logozzo and
Ball [15], which describes a system for reasoning about .NET soft-
ware that uses abstract interpretation to suggest program repairs.
However, the focus in these approaches is not on concurrency bugs.

Race detection There are three general approaches for detecting
concurrency bugs, including data races: static analysis, dynamic
analysis, and a combination of the two. There is a large literature
on each of these topic. For examples of static approaches to the
problem, see Naik et al. [17] and Voung et al. [26]. In this paper,
we utilize dynamic race detection techniques that identify races in

an execution for a particular input. Work on dynamic detection of
data races focuses either on structured parallelism or unstructured
parallelism. For unstructured parallelism, vector clock algorithms
are the standard, e.g., [1, 8]. For programs with structured fork-join
parallelism (as in our setting), prior work has shown that for a single
program input, in a single execution, one can pinpoint an example
data race, or else there can be no data races with any interleaving
based on that input [16]. Races can be detected in a single execution
by tagging each variable with a constant number of labels that can
be used to determine whether threads are concurrent or not; specifi-
cally labels a single reader and a single writer per variable suffice in
a sequential execution [16]. Subsequent work on dynamic race de-
tection by Feng and Leiserson achieves a similar qualitative result
for Cilk’s fully-strict parallelism using an algorithm that they call
SP-Bags, but with lower asymptotic space and time overhead [7].
Raman et. al. [20] showed how to extend the SP-Bags algorithm to
support terminally-strict parallelism of async-finish parallelism.

9. Conclusions
We presented a tool for test-driven repair of data races in structured
parallel programs. The tool identifies static points in the program
where additional synchronization is required to fix data races for a
given set of input test cases. These static points obey the scoping
constraints in the input program, and are inserted with the goal
of maximizing parallelism. We evaluated an implementation of
our tool on a wide variety of benchmarks which require different
synchronization patterns. Our experimental results indicate that the
tool is effective — for all benchmarks, the tool was able to insert
finishes to avoid data races and maximize parallelism. Further, the
evaluation of the tool on student homeworks shows the potential



for such tools in future offerings of parallel programming courses,
especially in online versions.

There are multiple possibilities for future work. One of the lim-
itations of the tool is in analyzing long-running programs, which
may lead to the creation of S-DPSTs that do not fit in memory. One
possible extension for the future is to enable garbage collection of
parts of the S-DPST that do not exhibit race conditions. Some other
directions for future work include generation of context sensitive
finishes (where a finish is conditionally executed only in contexts
where a data race is observed), and test coverage analysis to evalu-
ate the suitability of a given set of test cases for program repair.
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Appendix A: Software Artifact Supplement
The ACM digital library contains an artifact as a supplement to this
paper. The artifact includes our tool to automatically fix data races
in Habanero Java (HJ) programs written using async and finish
constructs.
Components of the artifact are:
• the HJ compiler and runtime,
• instructions for setting up HJ,
• instructions for using the instrumenter and analyzer to identify

where a program needs extra finishes to eliminate data races,
and

• sample applications to demonstrate the capabilities of our tool.

One uses the artifact’s software by performing three steps:

1. Instrument a program to dynamically detect data races.
2. Execute the instrumented program to pinpoint references in-

volved in data races during the execution.
3. Apply our analyzer to the input program and trace files recorded

by the data race detector during execution. The analyzer will
identify program locations where additional finish statements
are required to eliminate races.


