Sindhu Yepuri

Turing Scholar, CS Honors, Math Major, Junior

281-248-1760 | syepuri@cs.utexas.edu

EDUCATION

The University of Texas at Austin - B.S. in Computer Science Turing Scholars and Mathematics **Expected Graduation: May 2024**

omputer Networks	 Decision Analytics
itural Language Processing	 Intro to Algebraic Structures
onors Data Structures	 Differential Equations
near Algebra	 Intro to Statistics/Probability
onors Intro to CS Research	 Honors Discrete Math
	nors Intro to CS Research near Algebra onors Data Structures tural Language Processing omputer Networks

Google COVID-19 Fund Nominee

• 2020 | Jerri-Ann Meyer Endowed Turing Scholarship

EXPERIENCE

Microsoft - Silicon Engineering Intern; Raleigh, NC

Familiar with: x86 Assembly, ISPC, CMake, SQL, HTML, JS

SystemVerilog

- Performed functional and formal verification for Microsoft Cloud's Custom CPU with a focus on its debug subsystem
- Developed re-usable SystemVerilog UVM functional test bench of the debug subsystem module based on micro-architectural specs.
- Implemented formal verification test bench of performance monitor through the use of cover properties, constraints, and assertions.
- Collaborated with logic designers, micro-architects and other verification engineers to develop test plan.

Texas Advanced Computing Center - Research Assistant; Austin, TX

Research in advanced visualization techniques, specifically ray tracing in a high performance computing environment.

- Supervised by Dr. Paul Navrátil, Director of Visualization at TACC
- Implementing Polynomial Lens Model on Intel's OSPRay Ray Tracer at Texas Advanced Computing Center
- Enables complex lens modeling and simulation of realistic lens effects during render, including lens flare, chromatic shift, and image distortion in C++/ISPC.
- Simulates complex optical systems for usage such as digital optics experiments and product prototyping.
- Combines existing open-source projects, utilizes dynamic library module integration, and the CMake modular build system.

Computer Graphics Directed Reading Group Leader; Austin, TX

Introducing other CS students to basic concepts such as rasterization, shading, ray tracing through the lens of related research papers · Objective is to have members implement a ray tracer at the end of the session

The University of Texas at Austin - Undergraduate TA; Austin, TX

Undergraduate Teaching Assistant for Elements of Computers and Programming (CS303e) taught by Professor Mike Scott.

PROJECTS

Realistic Procedural Terrain Generation

Implemented an interactive, animated scene that utilizes infinite procedural terrain and cloud generation in TypeScript.

- · Layered octaves of Perlin noise to get more realistic terrains, utilizing band pass filtering to generate different terrain texture.
- Used smooth step function to add atmospheric coloring and grass/rock/snow to our scene.
- Added shadows to scene by tracing the light's path to check if it was obstructed (similar to ray tracing), then scaled shadow coloring for more depth.

Q&A Recurrent Neural Networks with Attention

Trained a machine reading comprehension model, experimenting with SQuAD (Stanford Q&A Dataset).

- Implemented baseline continuous bag of words model & improved with a Gated Recurrent Unit variant of RNN with gating using PyTorch
- Augmented RNN model with attention, used learned weights to emphasize certain context words.
- Monitored training using TensorBoard and compared loss, accuracies, F1, and EM across these different techniques.

aiuzOS - Doom

Graphics coordinator for large group project that built up operating system capable of running the video game, Doom.

- · Over course of semester, implemented an operating system from scratch, building up features such as preemptive multithreading, a filesystem, virtual memory management, and system calls in C++/C.
- Focused on extending our operating system to handle the graphics component required by Doom: X11, VGA Driver, Desktop
- · Organized tasks and meetings within graphics team and corresponded with other teams working on other components of the OS

PoliTX @ HackTX 2020 Winner

Developed a web application that connects users to local/state/national politicians and corresponding legislation using React.

- Uses natural language processing to categorize bills and other political statements through Google Cloud services...
- · Analyzes trends of bills endorsed by politicians and provides voters with candidate history.

Jun. 2022- Aug. 2022

Jun. 2021 - May 2022

Sep. 2021 - Present

Jun. 2021 — Aug. 2021

May. 2022

Apr. 2022

Feb. 2021

Oct. 2020