
Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts from Proofs:
A Complete and Practical Technique for
Solving Linear Inequalities over Integers

Isil Dillig, Thomas Dillig, and Alex Aiken
Computer Science Department

Stanford University

June 26, 2009

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Linear Arithmetic over Integers

Problem: Given an m× n matrix A with only integer entries,
and a vector ~b ∈ Zn, does

A~x ≤ ~b

have any integer solutions?

Geometric interpretation:
Are there any integer points
inside the polyhedron
defined by A~x ≤ ~b?

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Linear Arithmetic over Integers

Problem: Given an m× n matrix A with only integer entries,
and a vector ~b ∈ Zn, does

A~x ≤ ~b

have any integer solutions?

Geometric interpretation:
Are there any integer points
inside the polyhedron
defined by A~x ≤ ~b?

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Integer overflow checking, RTL-datapath
verification, . . .

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Integer overflow checking, RTL-datapath
verification, . . .

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Integer overflow checking, RTL-datapath
verification, . . .

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Why is This an Important Problem?

Many applications in software verification, compiler
optimizations, and model checking require determining the
satisfiability of a system of linear integer inequalities.

Verifying buffer accesses: Is integer i used
as an index in the range of the buffer?

Array dependence analysis: Can a[i] and
a[j] refer to the same memory location?

Integer overflow checking, RTL-datapath
verification, . . .

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

The Omega Test:

Automata-based Approaches:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution

No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists

The Omega Test:

Automata-based Approaches:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution

Simplex yields integer solution ⇒ integer solution exists

The Omega Test:

Automata-based Approaches:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists

The Omega Test:

Automata-based Approaches:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Automata-based Approaches:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Extends the Fourier-Motzkin variable elimination technique for
reals to integers.

Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

Automata-based Approaches:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Extends the Fourier-Motzkin variable elimination technique for
reals to integers.
Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

Automata-based Approaches:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Extends the Fourier-Motzkin variable elimination technique for
reals to integers.
Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

Automata-based Approaches:

Encode the linear inequality system as an automaton.

System is satisfiable if the language accepted by the
automaton is non-empty.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

The Omega Test:

Extends the Fourier-Motzkin variable elimination technique for
reals to integers.
Eliminates variables one by one until the problem becomes
infeasible or no variables are left.

Automata-based Approaches:

Encode the linear inequality system as an automaton.
System is satisfiable if the language accepted by the
automaton is non-empty.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

This Talk

A new approach for finding better additional
constraints to find an integer solution.

Performs orders of magnitude better than
existing approaches.

Complete, i.e., guaranteed to find an integer
solution if one exists.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

This Talk

A new approach for finding better additional
constraints to find an integer solution.

Performs orders of magnitude better than
existing approaches.

Complete, i.e., guaranteed to find an integer
solution if one exists.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Existing Techniques

Simplex-based Approaches:

Use Simplex to obtain a real-valued solution
No real solution ⇒ no integer solution
Simplex yields integer solution ⇒ integer solution exists
Otherwise, add additional constraints and repeat.

This Talk

A new approach for finding better additional
constraints to find an integer solution.

Performs orders of magnitude better than
existing approaches.

Complete, i.e., guaranteed to find an integer
solution if one exists.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Motivating Example

Consider the system:

−3x+ 3y + z ≤ −1
3x− 3y + z ≤ 2

z = 0

This system has no integer solutions.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Motivating Example

Consider the system:

−3x+ 3y + z ≤ −1
3x− 3y + z ≤ 2

z = 0

Projection of this system onto
the xy plane:

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

This system has no integer solutions.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Motivating Example

Consider the system:

−3x+ 3y + z ≤ −1
3x− 3y + z ≤ 2

z = 0

Projection of this system onto
the xy plane:

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

This system has no integer solutions.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

How Do Existing Simplex-Based Approaches Deal with this
Example?

The simplest and most common Simplex-based technique is
branch and bound.

Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

If Simplex yields a solution with fractional component fi,
branch and bound solves two subproblems:

A~x ≤ ~b ∪ {xi ≤ bfic}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

How Do Existing Simplex-Based Approaches Deal with this
Example?

The simplest and most common Simplex-based technique is
branch and bound.

Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

If Simplex yields a solution with fractional component fi,
branch and bound solves two subproblems:

A~x ≤ ~b ∪ {xi ≤ bfic}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

How Do Existing Simplex-Based Approaches Deal with this
Example?

The simplest and most common Simplex-based technique is
branch and bound.

Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

If Simplex yields a solution with fractional component fi,
branch and bound solves two subproblems:

A~x ≤ ~b ∪ {xi ≤ bfic}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

How Do Existing Simplex-Based Approaches Deal with this
Example?

The simplest and most common Simplex-based technique is
branch and bound.

Since our algorithm can be seen as a generalization of branch
and bound, we will first illustrate this technique.

If Simplex yields a solution with fractional component fi,
branch and bound solves two subproblems:

A~x ≤ ~b ∪ {xi ≤ bfic}
A~x ≤ ~b ∪ {xi ≥ dfie}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

For instance, suppose
Simplex yields the solution

(x, y, z) =
(

1
3
, 0, 0

)
for the previous problem. 1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

For instance, suppose
Simplex yields the solution

(x, y, z) =
(

1
3
, 0, 0

)
for the previous problem. 1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

Branch and bound
constructs two subproblems
with additional constraints
x ≤ 0 and x ≥ 1

1

1

0
x

y

3x
-3
y=
2

3x
-3
y=
1x≤0 x≥1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

For the subproblem where
x ≥ 1, we obtain a new
solution

(x, y, z) =
(

1,
2
3
, 0
)

1

1

0
x

y

3x
-3
y=
2

3x
-3
y=
1x≤0 x≥1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

For the subproblem where
x ≥ 1, we obtain a new
solution

(x, y, z) =
(

1,
2
3
, 0
)

1

1

0
x

y

3x
-3
y=
2

3x
-3
y=
1x≤0 x≥1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

Now branch and bound
constructs another two new
subproblems with additional
constraints y ≥ 1 and y ≤ 0,
but the solution is still
fractional. 1

1

0
x

y

3x
-3
y=
2

3x
-3
y=
1x≤0 x≥1

y≥1

y≤0

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

In fact, by only adding
planes parallel to the x and
y planes, branch and bound
will never exclude the entire
space and will keep
obtaining more and more
fractional solutions. 1

1

0
x

y

3x
-3
y=
2

3x
-3
y=
1x≤0 x≥1

y≥1

y≤0

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Example Using Branch and Bound

While bounds on x and y
can be computed to make it
terminate, these bounds are
extremely large, making
branch and bound
impractical on its own.

1

1

0
x

y

3x
-3
y=
2

3x
-3
y=
1x≤0 x≥1

y≥1

y≤0

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

Branch and bound only excludes a single fractional point from
the solution space.

But this fractional point might lie on a k-dimensional
subspace not containing integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

Branch and bound only excludes a single fractional point from
the solution space.
But this fractional point might lie on a k-dimensional
subspace not containing integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

Branch and bound only excludes a single fractional point from
the solution space.
But this fractional point might lie on a k-dimensional
subspace not containing integer points.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1 The plane 3x− 3y = 1

does not contain any
integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

Branch and bound only excludes a single fractional point from
the solution space.
But this fractional point might lie on a k-dimensional
subspace not containing integer points.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1 Similarly, 3x− 3y = 2 also

does not contain any
integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

Branch and bound only excludes a single fractional point from
the solution space.
But this fractional point might lie on a k-dimensional
subspace not containing integer points.

Insight

Instead of excluding individual points on this
subspace, we would like to exclude exactly
this k-dimensional subspace.

Our technique systematically identifies and
excludes these higher dimensional subspaces
containing no integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

The Problem with Branch and Bound

Branch and bound only excludes a single fractional point from
the solution space.
But this fractional point might lie on a k-dimensional
subspace not containing integer points.

Insight

Instead of excluding individual points on this
subspace, we would like to exclude exactly
this k-dimensional subspace.

Our technique systematically identifies and
excludes these higher dimensional subspaces
containing no integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Defining constraints of a vertex v are the subset of the
inequalities given by A~x ≤ ~b that v satisfies as an equality.

These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by A~x ≤ ~b.

−3x+ 3y + z ≤ −1 is a
defining constraint of
(1
3 , 0, 0) because
−3 · 1

3 + 3 · 0 + 0 = −1.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Defining constraints of a vertex v are the subset of the
inequalities given by A~x ≤ ~b that v satisfies as an equality.

These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by A~x ≤ ~b.

−3x+ 3y + z ≤ −1 is a
defining constraint of
(1
3 , 0, 0) because
−3 · 1

3 + 3 · 0 + 0 = −1.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Defining constraints of a vertex v are the subset of the
inequalities given by A~x ≤ ~b that v satisfies as an equality.

These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by A~x ≤ ~b.

−3x+ 3y + z ≤ −1 is a
defining constraint of
(1
3 , 0, 0) because
−3 · 1

3 + 3 · 0 + 0 = −1.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm I

Step 1: When Simplex yields a fractional solution, identify the
defining constraints of this vertex.

Defining constraints of a vertex v are the subset of the
inequalities given by A~x ≤ ~b that v satisfies as an equality.

These exist because Simplex always returns points that lie on
the boundary of the polyhedron defined by A~x ≤ ~b.

−3x+ 3y + z ≤ −1 is a
defining constraint of
(1
3 , 0, 0) because
−3 · 1

3 + 3 · 0 + 0 = −1.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm II

Step 2: Determine whether the intersection A′~x = ~b′ of the
defining constraints contains any integer points.

Can be done efficiently.

Step 3a: If the intersection does contain integer points, perform
conventional branch and bound.

There may be integer points within the feasible region that lie
on this intersection.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm II

Step 2: Determine whether the intersection A′~x = ~b′ of the
defining constraints contains any integer points.

Can be done efficiently.

Step 3a: If the intersection does contain integer points, perform
conventional branch and bound.

There may be integer points within the feasible region that lie
on this intersection.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm II

Step 2: Determine whether the intersection A′~x = ~b′ of the
defining constraints contains any integer points.

Can be done efficiently.

Step 3a: If the intersection does contain integer points, perform
conventional branch and bound.

There may be integer points within the feasible region that lie
on this intersection.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm III

Idea:

If the intersection of defining constraints does
not contain integer solutions, we want to iden-
tify the smallest subset of the defining con-
straints whose intersection does not contain in-
teger solutions.

Smallest subset
⇒

Highest dimensional subspace

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm IV

Step 3b: If the intersection of defining
constraints does not contain an integer point,
compute a proof of unsatisfiability and “branch
around” this proof.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

A proof of unsatisfiability P for a system of linear equalities

A′~x = ~b′ is a plane such that:

1 it does not contain any integer points
2 it is implied by A′~x = ~b′

Branching around this proof plane ensures that we exclude at
least the intersection of the defining constraints.

Result: If there is a smaller subset of the defining constraints
whose intersection has no integer solution, we will obtain a
proof of unsatisfiability for this higher-dimensional intersection
in a finite number of steps.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

A proof of unsatisfiability P for a system of linear equalities

A′~x = ~b′ is a plane such that:

1 it does not contain any integer points

2 it is implied by A′~x = ~b′

Branching around this proof plane ensures that we exclude at
least the intersection of the defining constraints.

Result: If there is a smaller subset of the defining constraints
whose intersection has no integer solution, we will obtain a
proof of unsatisfiability for this higher-dimensional intersection
in a finite number of steps.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

A proof of unsatisfiability P for a system of linear equalities

A′~x = ~b′ is a plane such that:

1 it does not contain any integer points
2 it is implied by A′~x = ~b′

Branching around this proof plane ensures that we exclude at
least the intersection of the defining constraints.

Result: If there is a smaller subset of the defining constraints
whose intersection has no integer solution, we will obtain a
proof of unsatisfiability for this higher-dimensional intersection
in a finite number of steps.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

A proof of unsatisfiability P for a system of linear equalities

A′~x = ~b′ is a plane such that:

1 it does not contain any integer points
2 it is implied by A′~x = ~b′

Branching around this proof plane ensures that we exclude at
least the intersection of the defining constraints.

Result: If there is a smaller subset of the defining constraints
whose intersection has no integer solution, we will obtain a
proof of unsatisfiability for this higher-dimensional intersection
in a finite number of steps.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Outline of the Cuts-from-Proofs Algorithm V

A proof of unsatisfiability P for a system of linear equalities

A′~x = ~b′ is a plane such that:

1 it does not contain any integer points
2 it is implied by A′~x = ~b′

Branching around this proof plane ensures that we exclude at
least the intersection of the defining constraints.

Result: If there is a smaller subset of the defining constraints
whose intersection has no integer solution, we will obtain a
proof of unsatisfiability for this higher-dimensional intersection
in a finite number of steps.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Hermite Normal Forms

Charles Hermite

(1822-1901)

We can determine whether the defining
constraints A′~x = ~b′ have an integer solution
and also compute proofs of unsatisfiability
efficiently (in polynomial time) by using the
Hermite Normal Form of A′.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

Compute H, the Hermite normal form of A′, and H−1.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

Compute H, the Hermite normal form of A′, and H−1.

A′~x = ~b′

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

Compute H, the Hermite normal form of A′, and H−1.

H−1A′~x = H−1~b′

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

Compute H, the Hermite normal form of A′, and H−1.

H−1A′~x = H−1~b′

Important property:

H−1A′ is always integral.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Determining whether Defining Constraints Have Integer
Solutions

Compute H, the Hermite normal form of A′, and H−1.

H−1A′~x = H−1~b′

Important property:

A′~x = ~b′ has integer solutions
⇔

H−1~b′ integral.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Computing Proofs of Unsatisfiability

r1
. . .
ri
. . .
rm

︸ ︷︷ ︸

H−1A′

~x =

c1
. . .
ci
. . .
cm

︸ ︷︷ ︸
H−1~b′

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Computing Proofs of Unsatisfiability

r1
. . .

a1 . . . an

. . .
rm

︸ ︷︷ ︸

H−1A′

~x =

c1
. . .
ni
di

. . .
cm

︸ ︷︷ ︸
H−1~b′

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Computing Proofs of Unsatisfiability

r1
. . .

a1 . . . an

. . .
rm

︸ ︷︷ ︸

H−1A′

~x =

c1
. . .
ni
di

. . .
cm

︸ ︷︷ ︸
H−1~b′

Proof of Unsatisfiability

A proof of unsatisfiability of A′~x = ~b′ is:

a1di · x1 + . . .+ andi · xn = ni

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

Then, the closest planes parallel to and on either side of
Σaixi = ci containing integer points are:

Σ(ai/g)xi = bci/gc and Σ(ai/g)xi = dci/ge

Projection of planes containing
integer points on either side of
3x− 3y = 1

1

1

0
x

y

3x
-3
y=
1

x-
y≤
0

x-
y≥
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

Then, the closest planes parallel to and on either side of
Σaixi = ci containing integer points are:

Σ(ai/g)xi = bci/gc and Σ(ai/g)xi = dci/ge

Projection of planes containing
integer points on either side of
3x− 3y = 1

1

1

0
x

y

3x
-3
y=
1

x-
y≤
0

x-
y≥
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

“Branching around” the proof of unsatisfiabilty means solving
the two subproblems:

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

“Branching around” the proof of unsatisfiabilty means solving
the two subproblems:

A~x ≤ ~b ∪ {Σ(ai/g)xi ≤ bci/gc}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Branching around Proofs of Unsatisfiability

Let P = Σaixi = ci be a proof of unsatisfiability for the
defining constraints of a vertex v.

Compute the greatest common divisor g = gcd(a1, . . . , an).

“Branching around” the proof of unsatisfiabilty means solving
the two subproblems:

A~x ≤ ~b ∪ {Σ(ai/g)xi ≤ bci/gc}
A~x ≤ ~b ∪ {Σ(ai/g)xi ≥ dci/ge}

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Consider the vertex (1
3 , 0, 0)

and its defining constraints:

z = 0
−3x+ 3y + z = −1

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

The system A′~x = ~b′ is:[
0 0 1
−3 3 1

]
~x =

[
0
−1

]

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Multiply both sides by H−1:

1
3

[
3 0
2 1

] [
0 0 1
−3 3 1

]
~x

= 1
3

[
3 0
2 1

] [
0
−1

]
1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Here, H−1A′x = H−1~b is:[
0 0 1
−1 1 1

]
x =

[
0
−1

3

]

Therefore
−3x+ 3y + 3z = −1 is a
proof of unsatisfiability.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Here, H−1A′x = H−1~b is:[
0 0 1
−1 1 1

]
x =

[
0
−1

3

]
Therefore
−3x+ 3y + 3z = −1 is a
proof of unsatisfiability. 1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

The planes closest to and on
either side of the proof plane
−3x+ 3y + 3z = −1 are:

−x+ y + z = −1
−x+ y + z = 0

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

x-
y≤
0

x-
y≥
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Therefore, the
Cuts-from-Proofs algorithm
solves the two subproblems
shown in the figure.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

x-
y≤
0

x-
y≥
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Cuts-from-Proofs Example

Neither subproblem has a
real-valued solution,
therefore Cuts-from-Proofs
terminates in just one step.

1

1

0
x

y

3x
-3
y=
23x
-3
y=
1

x-
y≤
0

x-
y≥
1

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Completeness

To guarantee completeness, it is necessary to restrict the
coefficients allowed in the proofs of unsatisfiability to a
maximum constant α ≥ n · |amax|

n is the number of variables and |amax| the maximum absolute
value of coefficients in the original matrix A.

This is necessary to prevent the volume “cut” by a proof of
unsatisfiability from becoming infinitesimally small over time.

The constant n · |amax| ensures that if all the proofs of
unsatisfiability with coefficients less than or equal to n · |amax|
are added, the system will either become infeasible or it
contains integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Completeness

To guarantee completeness, it is necessary to restrict the
coefficients allowed in the proofs of unsatisfiability to a
maximum constant α ≥ n · |amax|

n is the number of variables and |amax| the maximum absolute
value of coefficients in the original matrix A.

This is necessary to prevent the volume “cut” by a proof of
unsatisfiability from becoming infinitesimally small over time.

The constant n · |amax| ensures that if all the proofs of
unsatisfiability with coefficients less than or equal to n · |amax|
are added, the system will either become infeasible or it
contains integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Completeness

To guarantee completeness, it is necessary to restrict the
coefficients allowed in the proofs of unsatisfiability to a
maximum constant α ≥ n · |amax|

n is the number of variables and |amax| the maximum absolute
value of coefficients in the original matrix A.

This is necessary to prevent the volume “cut” by a proof of
unsatisfiability from becoming infinitesimally small over time.

The constant n · |amax| ensures that if all the proofs of
unsatisfiability with coefficients less than or equal to n · |amax|
are added, the system will either become infeasible or it
contains integer points.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP’08:
Z3, Yices, MathSAT, and CVC3.

Among these tools,

Z3 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory’s
cutting planes method.
CVC3 uses the Omega Test.
MathSAT uses a combination of branch-and-cut and the
Omega test.

We did not compare against tools specialized in mixed
integer-linear programming, such as CPLEX and GLPK

because they do not support infinite precision arithmetic and
yield unsound results.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP’08:
Z3, Yices, MathSAT, and CVC3.

Among these tools,

Z3 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory’s
cutting planes method.

CVC3 uses the Omega Test.
MathSAT uses a combination of branch-and-cut and the
Omega test.

We did not compare against tools specialized in mixed
integer-linear programming, such as CPLEX and GLPK

because they do not support infinite precision arithmetic and
yield unsound results.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP’08:
Z3, Yices, MathSAT, and CVC3.

Among these tools,

Z3 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory’s
cutting planes method.
CVC3 uses the Omega Test.

MathSAT uses a combination of branch-and-cut and the
Omega test.

We did not compare against tools specialized in mixed
integer-linear programming, such as CPLEX and GLPK

because they do not support infinite precision arithmetic and
yield unsound results.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP’08:
Z3, Yices, MathSAT, and CVC3.

Among these tools,

Z3 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory’s
cutting planes method.
CVC3 uses the Omega Test.
MathSAT uses a combination of branch-and-cut and the
Omega test.

We did not compare against tools specialized in mixed
integer-linear programming, such as CPLEX and GLPK

because they do not support infinite precision arithmetic and
yield unsound results.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

We compare the performance of the Cuts-from-Proofs
algorithm against the top four competitors of SMT-COMP’08:
Z3, Yices, MathSAT, and CVC3.

Among these tools,

Z3 and Yices use the Simplex-based branch-and-cut algorithm,
which is a combination of branch and bound and Gomory’s
cutting planes method.
CVC3 uses the Omega Test.
MathSAT uses a combination of branch-and-cut and the
Omega test.

We did not compare against tools specialized in mixed
integer-linear programming, such as CPLEX and GLPK

because they do not support infinite precision arithmetic and
yield unsound results.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

Implementation utilizes an infinite precision arithmetic library
based on GNU MP

Performs computation natively on 64-bit values
But switches to infinite precision representation when overflow
is detected.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

Implementation utilizes an infinite precision arithmetic library
based on GNU MP

Performs computation natively on 64-bit values
But switches to infinite precision representation when overflow
is detected.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

Implementation utilizes an infinite precision arithmetic library
based on GNU MP

Performs computation natively on 64-bit values
But switches to infinite precision representation when overflow
is detected.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

Implementation utilizes an infinite precision arithmetic library
based on GNU MP

Performs computation natively on 64-bit values
But switches to infinite precision representation when overflow
is detected.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

Implementation utilizes an infinite precision arithmetic library
based on GNU MP

Performs computation natively on 64-bit values

But switches to infinite precision representation when overflow
is detected.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Implementation

Cuts-from-Proofs is implemented as part of the Mistral
constraint solver.

Mistral implements the combined
theory of linear integer arithmetic and
uninterpreted functions.

Mistral is used to solve large arithmetic
constraints that arise from analyzing
unbounded data structures like arrays.

Implementation utilizes an infinite precision arithmetic library
based on GNU MP

Performs computation natively on 64-bit values
But switches to infinite precision representation when overflow
is detected.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

0

200

400

600

800

1000

1200

10 15 20 25 30 35 40 45

A
ve
ra
g
e
 r
u
n
n
in
g
 t
im
e
 (
se
co
n
d
s)

Number of variables

Mistral
Yices
Z3

MathSAT
CVC3

Number of variables vs. average running time. All systems are
randomly generated inequalities with fixed coefficient size.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

0

200

400

600

800

1000

1200

10 15 20 25 30 35 40 45

A
ve
ra
g
e
 r
u
n
n
in
g
 t
im
e
 (
se
co
n
d
s)

Number of variables

Mistral
Yices
Z3

MathSAT
CVC3

345s

3.47s

Number of variables vs. average running time. All systems are
randomly generated inequalities with fixed coefficient size.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

0

20

40

60

80

100

10 15 20 25 30 35 40 45

S
u
c
ce
ss
 r
a
te
 (
%
)

Number of variables

Mistral
Yices

Z3
MathSAT

CVC3

Number of variables vs. percent of successful runs. All systems are
randomly generated inequalities with fixed coefficient size.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

0

20

40

60

80

100

10 15 20 25 30 35 40 45

S
u
cc
e
ss
 r
a
te
 (
%
)

Number of variables

Mistral
Yices

Z3
MathSAT

CVC3

100%

36%

Number of variables vs. percent of successful runs. All systems are
randomly generated inequalities with fixed coefficient size.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Experiments

0.01

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

A
ve

ra
g
e
 r
u
n
n
in
g
 t
im

e
 in

 lo
g
 s
ca

le
 (
se

co
n
d
s)

Maximum Coefficient Size (10 variables, 20 inequalities)

Mistral
Yices

Z3
MathSAT

CVC3

Maximum coefficient vs. average running time for a 10x20 system.

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Any Questions?

Cuts from Proofs: A Complete and Practical Technique for Solving Linear Inequalities over Integers

Related Work

Pugh, W.:
The Omega Test: A Fast and Practical Integer Programming Algorithm for Dependence Analysis.
Communications of the ACM (1992)

Ganesh, V., Berezin, S., Dill, D.:
Deciding Presburger Arithmetic by Model Checking and Comparisons with Other Methods.
In: FMCAD ’02: Proceedings of the 4th International Conference on Formal Methods in Computer-Aided Design,
London, UK, Springer-Verlag (2002) 171–186

Nemhauser, G.L., Wolsey, L.:
Integer and Combinatorial Optimization.
John Wiley & Sons (1988)

Storjohann, A., Labahn, G.:
Asymptotically Fast Computation of Hermite Normal Forms of Integer Matrices.
In: Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC ’96, ACM Press (1996) 259–266

Jain, H., Clarke, E., Grumberg, O.:
Efficient Craig Interpolation for Linear Diophantine (Dis)equations and Linear Modular Equations.
In: CAV ’08, Berlin, Heidelberg, Springer-Verlag (2008) 254–267

