
CS345H: Programming Languages

Lecture 12: Type Inference

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 1/33

Introduction

I So far when we studied typing, we always assumed that the
programmer annotated some types

I Example: We gave types to let bindings and lambda variables
in class

I But annotating types can be cumbersome!

I Anyone who has ever written C++ code can really empathize:
vector<Map<int, string> >::const_iterator it...

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 2/33

Type Inference

I Goal of type inference: Automatically deduce the most general
type for each expression

I Two key points:

1. Automatically inferring types: This means the programmer has
to write no types, but still gets all the benefit from static typing

2. Inferring the most general type: This means we want to infer
polymorphic types whenever possible

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 3/33

Type System

I Here is the type system we used in the lambda language:

integer i

Γ ` i : Int

string s

Γ ` s : String

identifier id

Γ ` id : Γ(id)

Γ ` S1 : Int
Γ ` S2 : Int

Γ ` S1 + S2 : Int

Γ ` S1 : String
Γ ` S2 : String

Γ ` S1 :: S2 : String

Γ ` S1 : τ1
τ = τ1
Γ[id← τ ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Γ[x ← τ1] ` S1 : τ2
Γ ` λx : τ1.S1 : τ1 → τ2

Γ ` S1 : τ1 → τ2
Γ ` S2 : τ1

Γ ` (S1 S2) : τ2

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 4/33

Type Inference Example 1

I But, do we actually need these type annotations to infer the
type of programs?

I Consider the following example:
let f1 = lambda x.x+2 in ..

I Here, we know that function f1 adds two to its argument

I We also know that plus is only defined on integers

I Therefore, the type of f1 must be Int → Int

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 5/33

Type Inference Example 2

I Consider the following example:
let f2 = lambda x.lambda y.x+y in ..

I Here, we know that function f2 has two (curried) arguments,
x and y

I We also know that plus is only defined on integers

I Therefore, the type of f2 must be Int → Int → Int

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 6/33

1



Type Inference Example 3

I Consider the following example:
let f2 = lambda x.lambda y.x+1 in ..

I Here, we know that function f2 has two (curried) arguments,
x and y

I We also know that plus is only defined on integers

I But f2 will work for any type of y

I Therefore, the type of f2 must be ∀α.Int → α→ Int

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 7/33

Type Inference Example 4

I Now, consider the following example:
let f2 = lambda g.(g 0) in ..

I Here, we know that function f2 takes a function as argument
since it is applied to 0.

I We also know that the function g is applied to in integer

I Therefore, the type of g must be ∀α.Int → α

I This means that the type of f2 is ∀α.(Int → α)→ α

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 8/33

Type Inference Overview

I Goal of the rest of this lecture: Develop an algorithm that can
compute the most general type for any expression without any
type annotations

I For this, let us look at the type derivation for the following
simple function:
lambda x:Int.x+2

I Here is the type derivation tree for this expression:

identifer x
Γ(x ) = Int

Γ[x ← Int ] ` x : Int

integer 2

Γ[x ← Int ] ` 2 : Int

Γ[x ← Int ] ` x + 2 : Int

Γ ` λx :Int .x + 2 : Int → Int

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 9/33

Type Variables

I Big Idea: Replace the concrete type Int annotated with a type
variable and collect all constraints on this type variable.

I Specifically, pretend that the type of the argument is just
some type variable called a

I And for all rules that have preconditions on a, write these
preconditions as constraints

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 10/33

Type Variables Cont.

I Here is the type derivation tree for this expression using type
variable a:

identifer x
Γ(x ) = a

Γ[x ← a] ` x : a
a = Int

integer 2

Γ[x ← a] ` 2 : Int

Γ[x ← a] ` x + 2 : Int

Γ ` λx :a.x + 2 : a → Int

I Observe that we have one additional precondition on the plus
rule: The type variable a must be equal to Int for this rule to
apply.

I We now obtain the type: a → Int and the constraint a = Int

I Final type: Int → Int

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 11/33

Type Variables in Typing Rules

I In this example, we dealt with not knowing the type of x in
the following way:

I We introduced a type variable a for the type of x

I Every time a rule uses the type of x , we use x

I Since the plus rule has the precondition that both operands
must be of type Int, we introduced a constraint a = Int

I After we typed the expression, we had a the type a → Int and
the constraint a = Int

I Solving the type with respect to the collected constraint yields:
Int → Int

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 12/33

2



Generalizing this Example

I This strategy generalizes!

I We will introduce type variables for every type annotation

I We will collect constraints on type variables during type
checking

I We will end up with a type containing type variables

I We will solve this type with respect to the collected
constraints

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 13/33

Generalizing our typing rules

I The base cases stay unchanged:

integer i

Γ ` i : Int

string s

Γ ` s : String

identifier id

Γ ` id : Γ(id)

I When type checking plus, we now collect constraints on the
operands:

Γ ` S1 : τ1
Γ ` S2 : τ2
τ1 = Int , τ2 = Int

Γ ` S1 + S2 : Int

I The lines marked in red are constraints.

I Specifically, this rule now succeeds as long as S1 and S2
evaluate to any type, we simply collect constraints on the
types τ1 and τ2 to be processed later

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 14/33

Generalizing our typing rules

I Let’s move on to the typing rule for concatenation:

Γ ` S1 : τ1
Γ ` S2 : τ2
τ1 = String , τ2 = String

Γ ` S1 :: S2 : String

I The lines marked in red are again constraints.

I Again, this rule now succeeds as long as S1 and S2 evaluate to
any type, we simply collect constraints on the types τ1 and τ2
to be processed later

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 15/33

The Let Case

I Let’s move on to the typing rule for let:

Γ[id← a] ` S1 : a (a fresh)
Γ[id← a] ` S2 : τ

Γ ` let id = S1 in S2 : τ

I Here, all we do is introduce a fresh type variable to capture
the (unknown) type of id.

I Observe that this case only introduces a type variable, but
does not add any constraints

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 16/33

The Lambda Case

I Let’s move on to the typing rule for lambda:

Γ[x ← a] ` S1 : τ (a fresh)

Γ ` λx .S1 : a → τ

I Here, again we introduce a fresh type variable to capture the
(unknown) type of x.

I We also use this type variable in the return type

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 17/33

Application

I Now the only rule missing so far is application:

Γ ` S1 : τ1
Γ ` S2 : τ2
τ1 = τ2 → a (a fresh)

Γ ` (S1 S2) : a

I Here, we again introduce a fresh type variable a

I In this rule, this type variable encodes the return type of the
application

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 18/33

3



Example 1

I Let’s use these new rules to derive the typing judgment and
constraints on some examples:
lambda x.x+2

I Type derivation:

identifer x
Γ(x ) = a1

Γ[x ← a1] ` x : a1

integer 2

Γ[x ← Int ] ` 2 : Int
a1 = Int , Int = Int

Γ[x ← a1] ` x + 2 : Int

Γ ` λx .x + 2 : a1 → Int

I Final Type: a1 → Int under constraints a1 = Int , Int = Int

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 19/33

Example 1 Cont

I What does this type mean? a1 → Int under constraints
a1 = Int , Int = Int

I We want to solve this type, i.e., substitute everything known
from the constraints as much as possible.

I Goal of Solving: Deduce final type with no constraints

I Solving this type yields Int → Int

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 20/33

Example 2

I What about the following recursive function? (This function
does not terminate, but this is unimportant for this example)
let f = lambda x.(f x) in f

I Type derivation:

Γ[f ← a1][x ← a2] ` f : a1
Γ[f ← a1][x ← a2] ` x : a2
a1 = a2 → a3

Γ[f ← a1][x ← a2] ` (f x ) : a3
Γ[f ← a1] ` λx .(f x ) : a1

Γ[f ← a1]f `: a1

Γ ` let f = λx .(f x ) in f : a1

I Final Type: a1 under constraint a1 = a2 → a3

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 21/33

Example 2 Cont
I Recall function: let f = lambda x.(f x) in f

I Final Type: a1 under constraint a1 = a2 → a3, but what does
this final type mean?

I First of all, observe that we can solve this type and these
constraints.

I This yields a2 → a3

I Here, since the solution still includes type variables, we found
a polymorphic type!

I Here, the type is ∀α1.∀α2.α1 → α2

I We will omit the quantifier from type variables and assume
that any type variable is implicitly universally quantified

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 22/33

Example 3

I Let’s look at the following expression
"duck" + 7

I Type derivation:

Γ ` ”duck” : String
Γ ` 7 : Int
String = Int , Int = Int

Γ ` ”duck” + 7 : Int

I We derived type Int under constraints String = Int , Int = Int

I These constraints are unsatisfiable!

I This means that the expression cannot be typed

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 23/33

Type Inference Structure

I Observe that we have split the problem of type inference into
two separate problems:

1. Constraint Inference: In this step, we apply the typing rules to
find the type (potentially in terms of type variables) and type
constraints

2. Constraint Solving: In this step, we solve the constraints.
Either we find a (potentially polymorphic) final type or the
constraints are unsatisfiable, in which case the program cannot
be typed

I Observe that step 1 can never get stuck! We now reject all
programs that cannot be types in step 2.

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 24/33

4



Constraint Solving

I So far, we have only informally sketched what we mean by
solving type constraints

I Convention: I will write constraints as a list with the type of
the program at the bottom

I Example: Consider again the expression let f = lambda

x.(f x) in f

I Here, the type of f written as list of constraints is:

a1 = a2 → a3
a1

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 25/33

Constraint Solving

I Definition: A solution to a system of type constraints is a
substitution σ mapping type variables to types such that all
type constraints are satisfied

I We discovered one solution, α1 → α2 for the system

a1 = a2 → a3
a1

I Substitution: σ = {a1 ← α1, a2 ← α2, a3 ← (α1 → α2)}

I But the following is also a solution: Int → Int

I Substitution: σ = {a1 ← Int , a2 ← Int , a3 ← (Int → Int)}

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 26/33

Constraint Solving

I And α→ α is also a solution for

a1 = a2 → a3
a1

I Substitution: σ = {a1 ← α, a2 ← α, a3 ← (α→ α)}

I But clearly some solutions are more general than others.

I We want to find the most general solution, also know as the
most general unifier.

I This can be done using unification

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 27/33

Constraint Solving Cont.

I First Idea: We choose a variable on left-hand side and replace
all occurrences of this variable with its right-hand side. In
other words, we add the substitution x ← y for the equality
x = y

I Consider again the constraint system:

a1 = a2 → a3
a1

I Here, we pick a1. It’s right-hand side is a2 → a3. If we replace
all occurrences of a1, we get:

a2 → a3 = a2 → a3
a2 → a3

and the substitution σ = {a1 ← (a2 → a3), a2 ← a2, a3 ← a3}
Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 28/33

Constraint Solving Cont.

I Then, drop all trivial constraints:

a2 → a3

with substitution σ = {a2 ← a2, a3 ← a3}

I Repeat until we find a contradiction (Int = String) or there
are no equalities left.

I In this case, we have found the most general solution.

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 29/33

Constraint Solving Example
I Another example:

a1 = a2 → Int
a1 = String → a3

I Let’s pick a1:

a2 → Int = a2 → Int
a2 → Int = String → a3

with σ = {a1 ← a2 → Int , a2 ← a2, a3 ← a3}

I Remove redundant constraints:

a2 → Int = String → a3

with σ = {a2 ← a2, a3 ← a3}

I But now we are stuck, even though the final substitution is
σ = {a2 ← String , a3 ← Int , ...}

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 30/33

5



Constraint Solving Example

I Solution: Add one more rule:

I Rule: If X → Y = W → Z , then add substitution X = W
and Y = Z

I Back to the example:

a2 → Int = String → a3

with σ = {a2 ← a2, a3 ← a3}

I Add s2 ← Int and a3 ← String

I New constraint system:

String → Int = String → Int

with σ = {a2 ← String , a3 ← Int}
Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 31/33

Simple Unification Algorithm

I From constraints, pick one equality ax = e and apply
substitution ax ← e

I If such an equality does not exist, pick an equality of the form
X → Y = W → Z and apply substitutions X ←W ,Y ← Z

I Repeat until we either derive a contradiction or there are not
equalities left. This is a most general unifier.

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 32/33

Conclusion

I We have seen how we can use our typing rules to generate
type constraints.

I We looked at a simple algorithm to solve these constraints.

I But this algorithm is not very efficient.

I Next time: How to perform unification efficiently and type
inference in L

Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 33/33

6


