

Constraint Solving Constraint Solving So far, we have only informally sketched what we mean by Definition: A solution to a system of type constraints is a solving type constraints substitution σ mapping type variables to types such that all type constraints are satisfied • Convention: I will write constraints as a list with the type of the program at the bottom • We discovered one solution, $\alpha_1 \rightarrow \alpha_2$ for the system $a_1 = a_2 \rightarrow a_3$ Example: Consider again the expression let f = lambda x.(f x) in f Substitution: $\sigma = \{a_1 \leftarrow \alpha_1, a_2 \leftarrow \alpha_2, a_3 \leftarrow (\alpha_1 \rightarrow \alpha_2)\}$ Here, the type of f written as list of constraints is: • But the following is also a solution: $Int \rightarrow Int$ $a_1 = a_2 \rightarrow a_3$ a_1 Substitution: $\sigma = \{a_1 \leftarrow Int, a_2 \leftarrow Int, a_3 \leftarrow (Int \rightarrow Int)\}$ **Constraint Solving** Constraint Solving Cont. First Idea: We choose a variable on left-hand side and replace all occurrences of this variable with its right-hand side. In • And $\alpha \rightarrow \alpha$ is also a solution for other words, we add the substitution $x \leftarrow y$ for the equality $a_1 = a_2 \rightarrow a_3$ x = yConsider again the constraint system: • Substitution: $\sigma = \{a_1 \leftarrow \alpha, a_2 \leftarrow \alpha, a_3 \leftarrow (\alpha \rightarrow \alpha)\}$ $a_1 = a_2 \rightarrow a_3$ a_1 But clearly some solutions are more general than others. • Here, we pick a_1 . It's right-hand side is $a_2 \rightarrow a_3$. If we replace ▶ We want to find the most general solution, also know as the all occurrences of a_1 , we get: most general unifier. $a_2 \rightarrow a_3 = a_2 \rightarrow a_3$ This can be done using unification $a_2 \rightarrow a_3$ and the substitution $\sigma = \{a_1 \leftarrow (a_2 \rightarrow a_3), a_2 \leftarrow a_2, a_3 \leftarrow a_3\}$ Constraint Solving Cont. Constraint Solving Example Another example: $a_1 = a_2 \rightarrow Int$ $a_1 = String \rightarrow a_3$ Then, drop all trivial constraints: • Let's pick a_1 : $a_2 \rightarrow a_3$ $\begin{array}{l} a_2 \rightarrow Int = a_2 \rightarrow Int \\ a_2 \rightarrow Int = String \rightarrow a_3 \end{array}$ with substitution $\sigma = \{a_2 \leftarrow a_2, a_3 \leftarrow a_3\}$ with $\sigma = \{a_1 \leftarrow a_2 \rightarrow Int, a_2 \leftarrow a_2, a_3 \leftarrow a_3\}$ • Repeat until we find a contradiction (Int = String) or there are no equalities left. Remove redundant constraints: $a_2 \rightarrow Int = String \rightarrow a_3$ In this case, we have found the most general solution. with $\sigma = \{a_2 \leftarrow a_2, a_3 \leftarrow a_3\}$ But now we are stuck, even though the final substitution is $\sigma = \{a_2 \leftarrow String, a_3 \leftarrow Int, \ldots\}$

Constraint Solving Example Solution: Add one more rule:	Simple Unification Algorithm
 Rule: If X → Y = W → Z, then add substitution X = W and Y = Z Back to the example: a₂ → Int = String → a₃ with σ = {a₂ ← a₂, a₃ ← a₃} Add s₂ ← Int and a₃ ← String New constraint system: String → Int = String → Int with σ = {a₂ ← String, a₃ ← Int} 	 From constraints, pick one equality a_x = e and apply substitution a_x ← e If such an equality does not exist, pick an equality of the form X → Y = W → Z and apply substitutions X ← W, Y ← Z Repeat until we either derive a contradiction or there are not equalities left. This is a most general unifier.
Thomas Dillig, C5345H: Programming Languages Lecture 12: Type Inference 31/33	Thomas Dillig, CS345H: Programming Languages Lecture 12: Type Inference 32/33
 Conclusion We have seen how we can use our typing rules to generate type constraints. We looked at a simple algorithm to solve these constraints. But this algorithm is not very efficient. Next time: How to perform unification efficiently and type inference in L 	