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Introduction

I So far when we studied typing, we always assumed that the
programmer annotated some types

I Example: We gave types to let bindings and lambda variables
in class

I But annotating types can be cumbersome!

I Anyone who has ever written C++ code can really empathize:
vector<Map<int, string> >::const_iterator it...
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Type Inference

I Goal of type inference: Automatically deduce the most general
type for each expression

I Two key points:

1. Automatically inferring types: This means the programmer has
to write no types, but still gets all the benefit from static typing

2. Inferring the most general type: This means we want to infer
polymorphic types whenever possible
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Type System

I Here is the type system we used in the lambda language:

integer i

Γ ` i : Int

string s

Γ ` s : String

identifier id

Γ ` id : Γ(id)

Γ ` S1 : Int
Γ ` S2 : Int

Γ ` S1 + S2 : Int

Γ ` S1 : String
Γ ` S2 : String

Γ ` S1 :: S2 : String

Γ ` S1 : τ1
τ = τ1
Γ[id← τ ] ` S2 : τ3

Γ ` let id : τ = S1 in S2 : τ3

Γ[x ← τ1] ` S1 : τ2
Γ ` λx : τ1.S1 : τ1 → τ2

Γ ` S1 : τ1 → τ2
Γ ` S2 : τ1

Γ ` (S1 S2) : τ2
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Type Inference Example 1

I But, do we actually need these type annotations to infer the
type of programs?

I Consider the following example:
let f1 = lambda x.x+2 in ..

I Here, we know that function f1 adds two to its argument

I We also know that plus is only defined on integers

I Therefore, the type of f1 must be Int → Int
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Type Inference Example 2

I Consider the following example:
let f2 = lambda x.lambda y.x+y in ..

I Here, we know that function f2 has two (curried) arguments,
x and y

I We also know that plus is only defined on integers

I Therefore, the type of f2 must be Int → Int → Int
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Type Inference Example 3

I Consider the following example:
let f2 = lambda x.lambda y.x+1 in ..

I Here, we know that function f2 has two (curried) arguments,
x and y

I We also know that plus is only defined on integers

I But f2 will work for any type of y

I Therefore, the type of f2 must be ∀α.Int → α→ Int
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Type Inference Example 4

I Now, consider the following example:
let f2 = lambda g.(g 0) in ..

I Here, we know that function f2 takes a function as argument
since it is applied to 0.

I We also know that the function g is applied to in integer

I Therefore, the type of g must be ∀α.Int → α

I This means that the type of f2 is ∀α.(Int → α)→ α
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Type Inference Overview

I Goal of the rest of this lecture: Develop an algorithm that can
compute the most general type for any expression without any
type annotations

I For this, let us look at the type derivation for the following
simple function:
lambda x:Int.x+2

I Here is the type derivation tree for this expression:

identifer x
Γ(x ) = Int

Γ[x ← Int ] ` x : Int

integer 2

Γ[x ← Int ] ` 2 : Int

Γ[x ← Int ] ` x + 2 : Int

Γ ` λx :Int .x + 2 : Int → Int
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Type Variables

I Big Idea: Replace the concrete type Int annotated with a type
variable and collect all constraints on this type variable.

I Specifically, pretend that the type of the argument is just
some type variable called a

I And for all rules that have preconditions on a, write these
preconditions as constraints
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Type Variables Cont.

I Here is the type derivation tree for this expression using type
variable a:

identifer x
Γ(x ) = a

Γ[x ← a] ` x : a
a = Int

integer 2

Γ[x ← a] ` 2 : Int

Γ[x ← a] ` x + 2 : Int

Γ ` λx :a.x + 2 : a → Int

I Observe that we have one additional precondition on the plus
rule: The type variable a must be equal to Int for this rule to
apply.

I We now obtain the type: a → Int and the constraint a = Int

I Final type: Int → Int
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Type Variables in Typing Rules

I In this example, we dealt with not knowing the type of x in
the following way:

I We introduced a type variable a for the type of x

I Every time a rule uses the type of x , we use x

I Since the plus rule has the precondition that both operands
must be of type Int, we introduced a constraint a = Int

I After we typed the expression, we had a the type a → Int and
the constraint a = Int

I Solving the type with respect to the collected constraint yields:
Int → Int
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Generalizing this Example

I This strategy generalizes!

I We will introduce type variables for every type annotation

I We will collect constraints on type variables during type
checking

I We will end up with a type containing type variables

I We will solve this type with respect to the collected
constraints
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Generalizing our typing rules

I The base cases stay unchanged:

integer i

Γ ` i : Int

string s

Γ ` s : String

identifier id

Γ ` id : Γ(id)

I When type checking plus, we now collect constraints on the
operands:

Γ ` S1 : τ1
Γ ` S2 : τ2
τ1 = Int , τ2 = Int

Γ ` S1 + S2 : Int

I The lines marked in red are constraints.

I Specifically, this rule now succeeds as long as S1 and S2
evaluate to any type, we simply collect constraints on the
types τ1 and τ2 to be processed later
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Generalizing our typing rules

I Let’s move on to the typing rule for concatenation:

Γ ` S1 : τ1
Γ ` S2 : τ2
τ1 = String , τ2 = String

Γ ` S1 :: S2 : String

I The lines marked in red are again constraints.

I Again, this rule now succeeds as long as S1 and S2 evaluate to
any type, we simply collect constraints on the types τ1 and τ2
to be processed later
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The Let Case

I Let’s move on to the typing rule for let:

Γ[id← a] ` S1 : a (a fresh)
Γ[id← a] ` S2 : τ

Γ ` let id = S1 in S2 : τ

I Here, all we do is introduce a fresh type variable to capture
the (unknown) type of id.

I Observe that this case only introduces a type variable, but
does not add any constraints
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The Lambda Case

I Let’s move on to the typing rule for lambda:

Γ[x ← a] ` S1 : τ (a fresh)

Γ ` λx .S1 : a → τ

I Here, again we introduce a fresh type variable to capture the
(unknown) type of x.

I We also use this type variable in the return type
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Application

I Now the only rule missing so far is application:

Γ ` S1 : τ1
Γ ` S2 : τ2
τ1 = τ2 → a (a fresh)

Γ ` (S1 S2) : a

I Here, we again introduce a fresh type variable a

I In this rule, this type variable encodes the return type of the
application
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Example 1

I Let’s use these new rules to derive the typing judgment and
constraints on some examples:
lambda x.x+2

I Type derivation:

identifer x
Γ(x ) = a1

Γ[x ← a1] ` x : a1

integer 2

Γ[x ← Int ] ` 2 : Int
a1 = Int , Int = Int

Γ[x ← a1] ` x + 2 : Int

Γ ` λx .x + 2 : a1 → Int

I Final Type: a1 → Int under constraints a1 = Int , Int = Int
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Example 1 Cont

I What does this type mean? a1 → Int under constraints
a1 = Int , Int = Int

I We want to solve this type, i.e., substitute everything known
from the constraints as much as possible.

I Goal of Solving: Deduce final type with no constraints

I Solving this type yields Int → Int
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Example 2

I What about the following recursive function? (This function
does not terminate, but this is unimportant for this example)
let f = lambda x.(f x) in f

I Type derivation:

Γ[f ← a1][x ← a2] ` f : a1
Γ[f ← a1][x ← a2] ` x : a2
a1 = a2 → a3

Γ[f ← a1][x ← a2] ` (f x ) : a3
Γ[f ← a1] ` λx .(f x ) : a1

Γ[f ← a1]f `: a1

Γ ` let f = λx .(f x ) in f : a1

I Final Type: a1 under constraint a1 = a2 → a3
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Example 2 Cont
I Recall function: let f = lambda x.(f x) in f

I Final Type: a1 under constraint a1 = a2 → a3, but what does
this final type mean?

I First of all, observe that we can solve this type and these
constraints.

I This yields a2 → a3

I Here, since the solution still includes type variables, we found
a polymorphic type!

I Here, the type is ∀α1.∀α2.α1 → α2

I We will omit the quantifier from type variables and assume
that any type variable is implicitly universally quantified
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Example 3

I Let’s look at the following expression
"duck" + 7

I Type derivation:

Γ ` ”duck” : String
Γ ` 7 : Int
String = Int , Int = Int

Γ ` ”duck” + 7 : Int

I We derived type Int under constraints String = Int , Int = Int

I These constraints are unsatisfiable!

I This means that the expression cannot be typed
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Type Inference Structure

I Observe that we have split the problem of type inference into
two separate problems:

1. Constraint Inference: In this step, we apply the typing rules to
find the type (potentially in terms of type variables) and type
constraints

2. Constraint Solving: In this step, we solve the constraints.
Either we find a (potentially polymorphic) final type or the
constraints are unsatisfiable, in which case the program cannot
be typed

I Observe that step 1 can never get stuck! We now reject all
programs that cannot be types in step 2.
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Constraint Solving

I So far, we have only informally sketched what we mean by
solving type constraints

I Convention: I will write constraints as a list with the type of
the program at the bottom

I Example: Consider again the expression let f = lambda

x.(f x) in f

I Here, the type of f written as list of constraints is:

a1 = a2 → a3
a1
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Constraint Solving

I Definition: A solution to a system of type constraints is a
substitution σ mapping type variables to types such that all
type constraints are satisfied

I We discovered one solution, α1 → α2 for the system

a1 = a2 → a3
a1

I Substitution: σ = {a1 ← α1, a2 ← α2, a3 ← (α1 → α2)}

I But the following is also a solution: Int → Int

I Substitution: σ = {a1 ← Int , a2 ← Int , a3 ← (Int → Int)}
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Constraint Solving

I And α→ α is also a solution for

a1 = a2 → a3
a1

I Substitution: σ = {a1 ← α, a2 ← α, a3 ← (α→ α)}

I But clearly some solutions are more general than others.

I We want to find the most general solution, also know as the
most general unifier.

I This can be done using unification
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Constraint Solving Cont.

I First Idea: We choose a variable on left-hand side and replace
all occurrences of this variable with its right-hand side. In
other words, we add the substitution x ← y for the equality
x = y

I Consider again the constraint system:

a1 = a2 → a3
a1

I Here, we pick a1. It’s right-hand side is a2 → a3. If we replace
all occurrences of a1, we get:

a2 → a3 = a2 → a3
a2 → a3

and the substitution σ = {a1 ← (a2 → a3), a2 ← a2, a3 ← a3}
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Constraint Solving Cont.

I Then, drop all trivial constraints:

a2 → a3

with substitution σ = {a2 ← a2, a3 ← a3}

I Repeat until we find a contradiction (Int = String) or there
are no equalities left.

I In this case, we have found the most general solution.
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Constraint Solving Example
I Another example:

a1 = a2 → Int
a1 = String → a3

I Let’s pick a1:

a2 → Int = a2 → Int
a2 → Int = String → a3

with σ = {a1 ← a2 → Int , a2 ← a2, a3 ← a3}

I Remove redundant constraints:

a2 → Int = String → a3

with σ = {a2 ← a2, a3 ← a3}

I But now we are stuck, even though the final substitution is
σ = {a2 ← String , a3 ← Int , ...}
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Constraint Solving Example

I Solution: Add one more rule:

I Rule: If X → Y = W → Z , then add substitution X = W
and Y = Z

I Back to the example:

a2 → Int = String → a3

with σ = {a2 ← a2, a3 ← a3}

I Add s2 ← Int and a3 ← String

I New constraint system:

String → Int = String → Int

with σ = {a2 ← String , a3 ← Int}
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Simple Unification Algorithm

I From constraints, pick one equality ax = e and apply
substitution ax ← e

I If such an equality does not exist, pick an equality of the form
X → Y = W → Z and apply substitutions X ←W ,Y ← Z

I Repeat until we either derive a contradiction or there are not
equalities left. This is a most general unifier.
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Conclusion

I We have seen how we can use our typing rules to generate
type constraints.

I We looked at a simple algorithm to solve these constraints.

I But this algorithm is not very efficient.

I Next time: How to perform unification efficiently and type
inference in L
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