
CS345H: Programming Languages

Lecture 4: Implementation of Lexical Analysis

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 1/33

Announcements

I WA1 and PA0 are due Today

I WA2 and PA1 out today :-)

I If you are not very, very busy right now, get started now

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 2/33

Outline

I Last time: Specifying lexical structure using regular
expressions

I Today: How to recognize strings matching regular expressions
using finite automata.

I We will see determinist finite automata (DFAs) and
non-deterministic finite automata (NFAs)

I High-level story: RegEx -> NFA -> DFA -> Tables

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 3/33

Regular Expressions in Lexical Specifications

I Last lecture: How to specify the predicate s ∈ L(R)

I But yes/no answer is not enough!

I We really want to partition input into tokens

I We adapt regular expressions for this goal

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 4/33

Regular Expressions to Lexical Specifications (1)

I Step 1: Write a regular expression for the lexemes of each
token

I Integer constant: digit+

I Identifier: letter (letter + digit)∗

I Lambda: ’lambda’

I . . .

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 5/33

Regular Expressions to Lexical Specifications (2)

I Step 2: Construct R, matching lexemes for all tokens

I R = Integer constant + Identifier + Lambda + . . .

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 6/33

1



Regular Expressions to Lexical Specifications (3)

I Let the input be characters x1...xn

I Step 3: For each 1 ≤ i ≤ n check x1...xj ∈ L(R) for some j

I Then, remove x1...xj from input and repeat

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 7/33

Ambiguities I

I There are ambiguities in this algorithm. Where?

I How much input is used? What if x1...xi ∈ L(R) and
x1...xj ∈ L(R)?

I Example: identifier = letter (letter + digit)∗, if = ’i’ ’f’

I Rule: Pick longest possible string in L(R)

I This is known as “maximal munch”

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 8/33

Ambiguities II

I What if two rules match with the same number of characters?

I x1...xi ∈ L(R1) and x1...xi ∈ L(R2)?

I Example: "if"

I Rule: Use rule listed first

I This is how "if" is matched as a keyword, not identifier

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 9/33

Error Handling

I What if no rule matches a prefix of the input?

I Solution 1: Get stuck ⇒ Unacceptable

I Better Solution: Write a rule matching all “bad” strings

I Question: What kind of rule and where to place it?

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 10/33

Where are we?

I We now know how we can partition input string into tokens
assuming we can decide if a string is in the language described
by a regular expression.

I Next: How to decide if s ∈ L(R)

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 11/33

Finite Automata

I Regular Expressions ⇔ Specification

I Finite Automata ⇔ Implementation

I A finite automata formally consists of:
I An input alphabet Σ

I A set of states S

I A start state n

I A set of accepting states F ⊆ S

I A set of transitions state→input state

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 12/33

2



Finite Automata

I Transition S1 →α S2

I This means: In state S1 and input character α, go to state S2

I If end of input and in accepting state ⇒ accept

I Otherwise ⇒ reject

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 13/33

Finite Automata as State Graphs

I It is much easier to imagine finite automata visually:

A state:

The start state:

An accepting state:

A transition:

a

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 14/33

A Simple Example

I Here is an automaton that only accepts the string ”1”:

1

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 15/33

Another Simple Example

I A finite automaton accepting any number of 1’s followed by a
single 0

I Alphabet: {0, 1}

0

1

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 16/33

And Another Example

I Alphabet: {0, 1}

I What language does this automata recognize?

0

1

0

0

1

1

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 17/33

Epsilon Moves

I Another kind of transition: ε-moves

A B

I Machine can move from state A to B without reading any
input

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 18/33

3



Deterministic and Nondeterministic Automata

I Deterministic Finite Automata (DFA)
I At most one transition per input on any state

I No ε moves

I Nondeterministic Finite Automate (NFA)
I Can have multiple transitions for one input in a given state

I Can have ε-moves

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 19/33

Execution of Finite Automata

I A DFA can only take one path through the state graph that is
completely determined by the input

I NFAs can choose:
I Whether to make ε moves

I Which one of multiple transitions for a single input to take

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 20/33

Acceptance of NFAs
I This means: A NFA can get into multiple states at the same

time

I Consider again the alphabet Σ = {0, 1} and the language of
all strings ending in at least two 0s.

I Consider input 1 0 0

1
00

0

1
00

0

1
00

0

1
00

0

I Rule: NFA accepts if it can get to a final state
Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 21/33

NFAs vs. DFAs

I Fundamental Result: NFAs and DFAs recognize the same set
of languages (regular languages)

I DFAs are faster to execute, since there are no choices to
consider

I But NFAs can be much simpler for the same language

I Result: DFAs can be exponentially larger than NFA
recognizing same language

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 22/33

Regular Expressions to Finite Automata

I High-Level Sketch:
I Lexical Specification

I Regular Expressions

I NFA

I DFA

I Implementation of DFA

⇒ Lexer

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 23/33

Regular Expressions to NFA (1)

I For each kind of regular expression, define an NFA and
combine

I Will use the following notation: NFA for regular expression M :

M

I Base cases:

I For ε :

I For input a:
a

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 24/33

4



Regular Expressions to NFA (2)

I For AB :
BA

I For A + B :
B

A

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 25/33

Regular Expressions to NFA (3)

I For A∗:

A

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 26/33

Example of Regular Expression to NFA conversion

I Consider the regular expression (1 + 0)∗1

1
C E

1

0

C E

D F

1

0
B

C E

D F

G

1

0
A B

C E

D F

G H

1

0

1A B
C E

D F

G H I J

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 27/33

NFA to DFA: The Trick

I Insight: Simulate the NFA

I At any given time, the NFA is in a set of states

I States in the DFA ⇒ all (reachable) subsets of states in the
NFA

I Start State: the set of states reachable through ε moves from
the NFA start state

I Add transition A→a B to DFA iff:
I B is in the set of states reachable from any state in A after

seeing input a, considering ε moves as well

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 28/33

NFA to DFA: Example

Recall our friendly NFA for (1 + 0)∗1:

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

1

0

1A B
C E

D F

G H I J

ABCDHI ABCDHI

0

ABCDHI

ABCDFGHI0

ABCDHI

ABCDFGHI0

1

ABCDHI

ABCDFGHI0

1 ABCDEGHIJ

ABCDHI

ABCDFGHI0

1
1 ABCDEGHIJ

ABCDHI

ABCDFGHI0

1
1 ABCDEGHIJ

ABCDHI

ABCDFGHI0

1
1 ABCDEGHIJ

0 ABCDHI

ABCDFGHI0

1
1 ABCDEGHIJ

0 ABCDHI

ABCDFGHI0

1
1 ABCDEGHIJ

0
0

ABCDHI

ABCDFGHI0

1
1 ABCDEGHIJ

0
0

ABCDHI

ABCDFGHI0

1
1 ABCDEGHIJ

0
0

1 ABCDHI

ABCDFGHI0

1
1 ABCDEGHIJ

0
0

1

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 29/33

NFA to DFA: How many states?

I We need a state in the DFA for each set of states the NFA
can be in

I How many different states?

I If there are N states, the NFA must be in some subset of
those N states

I How many subsets of N states? 2N

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 30/33

5



Implementation

I A DFA can be implemented by a 2D table T
I One dimension is “states”

I Other dimension is “input symbols”

I For every transition A→c B , define T[A,c]=B

I DFA “execution”: If in state A and input c, read T[A,c] = B

and skip to state B

I Very efficient

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 31/33

Table Implementation of a DFA

0

1
1

0
0

1S

T

U

0 1

S T U

T T U

U T U

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 32/33

Implementation cont.

I Writing regular expressions as NFAs and converting them to
DFAs is exactly what flex does

I In fact, if you open the auto-generated flex file lex.yy.c,
you will see these tables emitted

I But, these DFAs can be huge

I In practice, flex-like tools trade off speed for space in the
choice of NFA and DFA representations

Thomas Dillig, CS345H: Programming Languages Lecture 4: Implementation of Lexical Analysis 33/33

6


