
CS345H: Programming Languages

Lecture 8: Operational Semantics II

Thomas Dillig

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 1/29

Outline

I We will discuss semantics of remining (interesting) L
expressions

I Will look at one more formalism for specifying meaning today

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 2/29

Back to Operational Semantics

I We are still missing semantics for key constructs in the L
programming language

I Let’s start with the if expression: if e1 then e2 else e3.

I Recall meaning: If e1 evaluates to a non-zero integer, the
meaning of the expression is e2, otherwise e3

I Any ideas on how to write this as an operational semantics
rule?

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 3/29

Operational Semantics of Conditionals

I Difficulty: What happens depends on whether e1 evaluates to
0 or not.

I Solution: Write two rules, one for the case where e1 evaluates
to 0 and one for the case whenre e1 evaluates to a non-zero
integer.

I What if e1 evaluates to 0?

E ` e1 : 0
E ` e3 : e

′

E ` if e1 then e2 else e3 : e ′

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 4/29

Operational Semantics of Conditionals Cont.

I What if e1 evaluates to a non-zero integer?

E ` e1 : non-zero integer
E ` e2 : e

′

E ` if e1 then e2 else e3 : e ′

I Upshot: Can encode choice by giving multiple rules for same
construct

I But need to make sure at most one rule can apply at any
point for deterministic semantics

I Deterministic Semantics: Every program evaluates to at most
one value

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 5/29

Operational Semantics of Function Definitions

I Recall: In L, function definitions of the form
fun f with x1,...,xn=e in... are equivalent to
let f = lambda x1...lambda xn.e in ...

I To define the meaning of a function definition, we can either
repeat the lambda and let binding rules in one rule or rewrite
the function definition into let and lambda’s and invoke the
existing rules

I We will do the latter:

E ` let f = lambda x1. . . . lambda xn .e1 in e2 : e

E ` fun f with x1, . . . , xn = e1 in e2 : e

I This only works if there are no circular reductions!

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 6/29

1

Operational Semantics of Variable-Length Expressions

I The trick we just used to give meaning to function definitions
is also useful for giving meaning to variable-length expressions.

I Consider the following grammar for a list of integers:

S → [E]
E → int E | int

I Example strings in L(S): [3], [2 3 4], [1 3],...

I Suppose we want to define the meaning of a list of integers as
their sum: How can we write operational semantics for this
mini-language?

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 7/29

Operational Semantics of Variable-Length Expressions

I Observation: Difficulty caused by unknown length of list

I Let’s write operational semantics for a list of length 2:

` [i1 i2] : i1 + i2

I Solution: Think recursively! The sum of a list of k integers
can be obtained by removing the first integer, computing the
sum of the remainder and adding the two values

I This translates into two rules: Base case and inductive case

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 8/29

Operational Semantics of Variable-Length Expressions
I Base case: List with one integer

` [i] : i

I Inductive Case: List with at least two integers

` [R] : i2
` [i1,R] : i1 + i2

I Upshot: To give semantics to variable-length expression,
decompose recursively into inductive case(s) and base case(s)

I Observe that it is possible to encode computation in this
formalism, we will (briefly) see this again towards the end of
the class

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 9/29

Alternative Semantics

I We can also define the meaning of a list program as follows:
Base case:

` i : i

Inductive case:
` e1 : i1 `: e2 : i2
` e1 + e2 : i1 + i2

Removing the brackets:

` e : i

` [e] : i

I Are these two semantics equivalent?

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 10/29

Operational Semantics of Application in L
I Last time we only gave operational semantics for the

application base case: Two expressions:

E ` e1 : lambda x . e ′1
E ` e ′1[e2/x] : e

E ` (e1 e2) : e

I But the application can have any number of expressions in L.
Example: (x y z) is a valid L expression with meaning ((x

y) z)

I Solution: Write inductive case for more than two expressions!

E ` e1 : lambda x .e ′1
E ` e ′1[e2/x] : e
E ` (e R) : e ′

E ` (e1 e2 R) : e ′

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 11/29

Operational Semantics of Application in L

I What about an application with one expression, such as (x)?

I This is not an application

I Observe: L syntax allows this to indicate associativity and
precedence

I Question: What is the meaning (operational semantics rule)
for (x)?

I Answer:
E ` e : e ′

E ` (e) : e ′

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 12/29

2

List Operations

I Let’s also take a brief look at semantics for some list
operations:

I Consider !e, which evaluated to the head of the list if e is a
list and to e otherwise

I e is a list:
E ` e : [e1, e2]

E `!e : e1

I e is not a list:
E ` e : e1 (e1 not a list)

E `!e : e1

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 13/29

List Operations

I What about e1@e2, which evaluated to the list [e1, e2]?

E ` e1 : e
′
1

E ` e2 : e
′
2(e

′
2 not Nil)

E ` e1@e2 : [e ′1, e
′
2]

I e2 evaluates to Nil:

E ` e1 : e
′
1

E ` e2 : Nil

E ` e1@e2 : e ′1

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 14/29

Congratulations!

I You can now understand every page in the L reference manual.

I For PA3, you will need to refer to the operational semantics of
L in the manual to implement your interpreter.

I The manual is the official source for the semantics of L, not
the reference interpreter!

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 15/29

Operational Semantics

I The rules we have written are known as large-step operational
semantics

I They are called large step because each rule completely
evaluates an expression, taking as many steps as necessary.

I Example: The plus rule

E ` e1 : i1 (integer)
E ` e2 : i2 (integer)

E ` e1 + e2 : i1 + i2

I Here, we evaluate both e1 and e2 to compute the final value
in one (big) step

I Alternate formalism for giving semantics: small-step
operational semantics

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 16/29

Small Step Operational Semantics

I Small-step operational semantics perform only one step of
computation per rule invocation

I You can think of SSOS as “decomposing” all operations that
happen in one rule in LSOS into individual steps

I This means: Each rule in SSOS has at most one precondition

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 17/29

Small-step Operational Semantics

I SSOS are easiest understood by an example. Consider the
integer plus in L written in SSOS:

I Rule 1: Adding two integers

〈c1 + c2,E 〉 → 〈c1 + c2,E 〉

I Rule 2: Reducing first expression to an integer

〈e1,E 〉 → 〈c,E ′〉
〈e1 + e2,E 〉 → 〈c + e2,E ′〉

I Rule 3: Reducing second expression to an integer

〈e,E 〉 → 〈c2,E ′〉
〈c1 + e,E 〉 → 〈c1 + c2,E ′〉

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 18/29

3

SSOS in Action

I Let’s use these rules to prove what the value of (2 + 4) + 6 is:

I 〈(2 + 4) + 6, 〉 → 〈6 + 6, 〉 → 〈12, 〉

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 19/29

SSOS

I You can tell small-step operational semantics by the 〈〉 →
notation

I In contrast, LSOS have the `: notation (at least in this class)

I SSOS are really (conditional) rewrite rules

I The β reduction of λ-calculus is a small-step semantics rule

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 20/29

SSOS of the Application

I Recall the large-step operational semantics:

E ` e1 : lambda x . e ′1
E ` e ′1[e2/x] : e

E ` (e1 e2) : e

I What are equivalent SSOS?

〈e ′1[e2/x],E 〉 → 〈e3,E ′〉
〈(lambda x .e ′1 e2),E 〉 → 〈e3,E ′〉

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 21/29

SSOS of the Application

I Recall the large-step operational semantics, evaluating e1
made a difference:

E ` e1 : lambda x . e ′1
E ` e ′1[e2/x] : e

E ` (e1 e2) : e

I What about in SSOS?

I For SSOS, other rules will rewrite the expression until it
matches the form lambda x . e ′1

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 22/29

SSOS of let

I First try:
〈e2,E [x ← e1]〉 → 〈e3, 〉

〈let x = e1 in e2,E 〉 → 〈e3,E 〉

I But we want eager semantics: We want to evaluate e1 before
adding to the environment.

I We want a rule that evaluates e1 as much as possible and only
then applies the let rule:

I Notation: We will write ê to indicate that expression e has
been evaluated as much as possible.

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 23/29

SSOS of let cont.

I Here are the two rules for eager let in SSOS:

〈e2,E [x ← ê1]〉 → 〈e2, 〉
〈let x = ê1 in e2,E 〉 → 〈e3,E 〉

〈e1,E 〉 → 〈ê1,E ′〉
〈let x = e1 in e2,E 〉 → 〈let x = ê1 in e2,E ′〉

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 24/29

4

Small-step vs. Big-step Semantics

I In big-step semantics, any rule may invoke any number of
other rules in the hypothesis

I This means any derivation is a tree.

I In small-step semantics, each rule only performs one step of
computation

I This means any derivation is a line

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 25/29

Advantages of SSOS

I The main advantage of SSOS is that it allows us to
distinguish between non-terminating computation and
undefined computation

I Recall: In BSOS, encountering an undefined expression, such
as 3+"duck" got us “stuck”, i.e., we could never satisfy the
hypothesis to reach a conclusion

I In SSOS, undefined expressions also get stuck,i.e. no rule
applies

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 26/29

Advantages of SSOS Cont.

I But, consider the following program: fun f with x = (f
x) in (f 1).

I In BSOS, we will “get stuck”, i.e. we will never satisfy all
hypothesis of the function invocation

I In SSOS, we will have an infinite derivation line

I Upshot: SSOS allow us to distinguish non-termination from
errors

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 27/29

Big vs. Small-Step Semantics

I The other big difference is that we can quantify the cost of a
computation with the number of steps in a small-step
derivation

I This allows us to talk about (some) notions of complexity
when analyzing small-step semantics

I Main disadvantage of small step semantics is that they are
less intuitive and and usually harder to write

I SSOS also always force one order, even if we would like to
leave an order undefined

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 28/29

Conclusion

I We have seen two formalisms for specifying meaning of
programs

I There are at least two more in common use: Denotational
Semantics and Axiomatic Semantics

I However, operational semantics seem to be winning the
“semantics wars”

I Why: Easier to understand and easier to prove (most)
properties with them

Thomas Dillig, CS345H: Programming Languages Lecture 8: Operational Semantics II 29/29

5

