
CS 105C: Lecture 10

1

Last Time...

2

Smart Pointers for Fun and Profit
Multiple noncommunicating managers is

an awful idea everywhere

std::unique_ptr: the manager that
disallows other managers

std::shared_ptr: the manager that
talks to other managers

Both classes allow us to manage the
lifetimes of objects using RAII

3

unique_ptr {
 T* ptr;
 ...
 unique_ptr(const unique_ptr& other) = delete;
 unique_ptr& operator=(const unique_ptr& other) = delete;

datacontrol block

1

unique_ptr works by blocking copies

shared_ptr works by reference counting

4

We can forward a forwarding reference with the original value category it had by using
std::forward

template<typename T>
T make_T(T&& arg){
 T(arg); // Calls copy constructor ONLY
 T(std::forward<T>(arg)); // Calls move OR copy constructor
}

1
2
3
4
5

T&& in a type-deduced context forms a forwarding pointer, which is a reference to the
category it was initialized with.

int main(){
 int x = 3;
 auto&& rvalue_reference = 3;
 auto&& lvalue_reference = x;
}

1
2
3
4
5

5

CS 105C: Lecture 10

Zero-cost abstractions

6

There are no zero-cost abstractions

https://www.youtube.com/embed/rHIkrotSwcc?enablejsapi=1

7

https://www.youtube.com/watch?v=rHIkrotSwcc
https://www.youtube.com/embed/rHIkrotSwcc?enablejsapi=1

Summary

8

Okay, for real though

Even abstractions as basic as function calls and
loops can add signficant amounts of overhead!

So much so that we have optimization techniques (inlining and
unrolling) to deal with the overheads of these abstractions!

So what the heck does it mean when we say that C++
offers zero-cost abstractions?

9

“ What you don’t use, you don’t pay for.
And further: What you do use, you

couldn’t hand code any better.

-- Bjarne Stroustrup

In practice, something we strive for more than something we accomplish.
10

"What you don't use, you
don't pay for"

11

Python: Heterogeneous Objects

a = [1, "1", 1.0]1

Python has heterogeneous collections: you can add objects of
different types into e.g. a list.

How convenient!

12

Python: Heterogeneous Objects

a = [1, "1", 1.0]

Since we can put any object into a list, we can put different-sized objects into a list.

How do we store them?

13

Option 1: Store objects inline

a = [1, "1", 1.0]

Advantages

Saves space!
Data remains local

Disadvantages

Indexing is now O(N)

Implications: simple for loops are now !O(N)2

14

Option 2: Store Objects as Pointers
a = [1, "1", 1.0]

Advantages

Indexing is O(1)
Store as much data as you want

Disadvantages

Accessing an element of the list costs
two pointer lookups (and probably a
cache miss or page fault)

15

There Is No Fundamental Way Around The Storage Problem

Any container storing heterogeneous elements must either pay an
 indexing cost or store elements indirectly.O(N)

Heterogeneous lists have
a high runtime cost.

16

What if I don't want to use this functionality?

a = [1, 2, 3]

Can I just place the elements in-line like I
would for a homogeneous array?

17

What if I don't want to use this functionality?

a = [1, 2, 3, "4"]

Can I just place the elements in-line like I
would for a homogeneous array?

No.
As long as we can add elements of a different type, we

have to be able to deal with it.

18

If we want to have a heterogeneous
collection, we must pay the runtime
cost even if we don't use it that way.

19

a = [1, 1, 1]

Even homogeneous collections are stored in Python
indirectly!

This has very real runtime implications for Python!

Let's add 1 to a bunch of numbers to test it out...

#include<vector>
#include<iostream>

int main(){
 std::vector<int> a(100'000'000, 1);
 for(auto& x : a){
 x++;
 }
}

1
2
3
4
5
6
7
8
9

def main():
 x = [1] * 100_000_000
 list(map(lambda z: z+1, x))

if __name__ == "__main__":
 main()

1
2
3
4
5
6

20

Test: Perform x+=1 on 100,000,000 ints in C++

Test: Perform x+=1 on 100,000,000 ints in Python

Test: Perform x+=1 on 100,000,000 ints in C++, optimized

21

Actually, the add operation in python isn't great either...

22

23

More Examples

24

Garbage Collection

int* read_unknown_data(const std::string& filename){
 std::istream inf(filename);
 int num_elements;
 inf >> num_elements;

 int* data = new int[num_elements]; // Ugh, when can I delete this?
}

1
2
3
4
5
6
7

Recall: Stack allocation/deallocation is lightning fast,
but size of object needs to be known at compile-time.

Unknown-size objects have to be allocated on the

heap and cleaned up later.

25

Garbage Collection

class Program{
 public int[] readInput(String fname)
 Scanner scanner = new Scanner(new File(fname));
 int[] vals = new int[scanner.nextInt()]; // Java will take care of it!
 for(int i = 0; i < vals.length){
 vals[i++] = scanner.nextInt();
 }
 return vals;
}

1
2
3
4
5
6
7
8
9

Garbage collection makes this fun and easy, at the
cost of a little extra time to run the GC algorithm!

But there's a small cost for every single value we use, and
that can add up.

26

Garbage Collection

Can I tell the garbage collector to only worry about
certain data in my heap?

No.

27

Garbage Collection

If I'm working in a garbage collected language, I have
to pay the GC cost even if I know ahead of time

exactly when all my memory can be deallocated!

I can manually force garbage collection to occur, but I can't tell the language
"trust me, drop that memory now" without violating gc safety requirements.

28

Green Threads
A lightweight threading system which relies on the language

runtime to schedule threads instead of the OS. Found in:

Java (pre-v1.1)
PyPy/Stackless Python
Erlang/Elixir
Go (goroutines)
Julia (tasks)
Haskell
Ruby (pre-v1.9)
Rust (pre-v1.0)

29

Green Threads

func f(from string) {
 for i := 0; i < 3; i++ {
 fmt.Println(from, ":", i)
 }
}

func main() {
 go f("goroutine")
 go func(msg string) {
 fmt.Println(msg)
 }("going")
}

1
2
3
4
5
6
7
8
9

10
11
12

goroutine : 0
going
goroutine : 1
goroutine : 2

1
2
3
4

example from https://gobyexample.com/goroutines

Threads managed by Go, not by the OS!

30

Can I tell my programming language that I don't want to
use green threads?

Green Threads

Yes.
Can I remove the code dealing with threads from the

language runtime to reduce the complexity/binary size of
the language?

No.

Just don't use green threads.

31

A warning about performance

32

“ Use your intuition to ask questions, not answer them

--John Osterhout, inventor of Tcl

Software engineers are full of horror stories of someone who spent weeks
optimizing the {memory access, program logic, parallelization} only to

realize that they didn't actually make the program run any faster!

33

“ Use your intuition to ask questions, not answer them

--John Osterhout, inventor of Tcl

We can look at some code and say "it looks like this should be slower"...

...but we must back this up with measurements showing it to be the case!

34

C++ Zero-Cost Abstractions
std::unique_ptr

35

Runtime cost Compile time cost Code Complexity Cost

No: no template is
instantiated so there's

no extra stuff to compile

No: unique_ptr (in its
simplest form) just

wraps new and delete

std::unique_ptr
Do we have to pay a cost for unique_ptr if we don't use it?

No.

36

std::unique_ptr

Could we write it better ourselves?

If we use handwritten allocation instead of
letting unique_ptr allocate stuff for us, do

we lose any performance?

37

Does it use more memory?

#include<memory>
#include<iostream>

int main(){
 int* databuf = new int[10000];
 int* rp = databuf;
 std::unique_ptr<int> up(databuf);

 std::cout << "Size of unique ptr = " << sizeof(up) << '\n';
 std::cout << "Size of raw ptr = " << sizeof(rp) << '\n';
}

1
2
3
4
5
6
7
8
9

10
11

❯ ./a.out
Size of unique ptr = 8
Size of raw ptr = 8

1
2
3

Apparently not.

38

Does it take more time to run?

Allocate + Deallocate 100,000,000 ints
using smart pointers and raw pointers

Conclusion: not really enough to matter.

Less than a 0.1% difference in a program
that spends all of its time doing allocation!

If your program spends 5% of its time

doing allocation, this is a 0.05% difference

39

https://www.modernescpp.com/index.php/memory-and-performance-overhead-of-smart-pointer

No extra cost if unused Just as fast as handwritten code

std::unique_ptr is a zero-cost abstraction

40

C++ Zero-Cost Abstractions
std::vector

41

std::vector
Do we have to pay a cost for vector if we don't use it?

Runtime cost Compile time cost Code Complexity Cost

No. No: no template is
instantiated so there's

no extra stuff to compile

Minimal: the code for
the abstraction has to

exist, but we don't have
to put it into our

program.

42

What you do use, you couldn’t hand code any better.

Do we need to pay the indirect storage cost like we do in Python?

After all, we can store any type of data in a C++ vector...

std::vector<int>
std::vector<float>
std::vector<Cow>

1
2
3

Since any given vector only stores one type of data, we can
store all of them in-line in the heap!

std::vector<int> a = {1, 2, 3};

43

Element Access
Element access in a raw array is a simple

procedure:

Find the array address
Add the appropriate offset
Load the element from offset

In principle, access in a vector is harder:

Find operator[] in vector method
Resolve operator [] overloads
Access data buffer within class
Add appropriate offset
Load element from offset

_Z8access_NRSt6vectorIiSaIiEEi:
.LFB853:
 .cfi_startproc
 movq (%rdi), %rax
 movslq %esi, %rsi
 movl (%rax,%rsi,4), %eax
 ret
 .cfi_endproc

1
2
3
4
5
6
7
8

_Z8access_NPPii:
.LFB854:
 .cfi_startproc
 movq (%rdi), %rax
 movslq %esi, %rsi
 movl (%rax,%rsi,4), %eax
 ret
 .cfi_endproc

1
2
3
4
5
6
7
8

44

Vector Copy
How do I make a copy of a vector in C++?

(Without using the built-in copy constructor)

template <typename T>
std::vector<T> makeCopy(const std::vector<T>& in){
 std::vector<T> out(in.size());
 for(int i = 0; i < in.size(); i++){
 out[i] = in[i];
 }
 return out;
}

1
2
3
4
5
6
7
8

Time for 10 million elements:
97 milliseconds

vector<int> makeCopySTL(const vector<int> &a) {
 vector<int> x = a;
 return x;
}

1
2
3
4

Time for 10 million elements:
13 milliseconds

45

How is the copy constructor so much faster??
Most modern processors provide vector units which can load/store

multiple addresses at once.

AVX2, per CPU cycle load/store, per CPU cycle

But there's a catch: the memory block has to be aligned to a multiple of
16! Most memory allocated in a program doesn't have this property!

46

Memory Alignment

The vector units require that memory is aligned (e.g. the beginning address is
a multiple of 16). An actual data buffer may not have this property.

47

Orange blocks can be copied via aligned
vector instructions--red blocks cannot.

Should we give up on using vector instructions
because some of the memory is uneligible?

48

Solution
Copy orange blocks via vector instructions, then

clean up red blocks with manual copying!

Determining which blocks can be copied and which
cannot at runtime is a little annoying....

_Z11makeCopySTLRKSt6vectorIiSaIiEE:
.LFB853:
 .cfi_startproc
;; blah blah blah
.L3:
 ; Associated code does "patch-up" on red blocks which can't be copied by aligned memmove
 movq %rcx, %xmm0
 addq %rcx, %rbx
 punpcklqdq %xmm0, %xmm0
 movq %rbx, 16(%r12)
 movups %xmm0, (%r12)
 movq 8(%rbp), %rax
 movq 0(%rbp), %rsi
 movq %rax, %rbx
 subq %rsi, %rbx
 cmpq %rsi, %rax
 je .L6
 movq %rcx, %rdi
 movq %rbx, %rdx
 call memmove@PLT ; Does accelerated memory copies using vector instructions!
 movq %rax, %rcx

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

The vector move constructor
does all of this by default!

Reality is much more complicated than presented here--sometimes
both your source and destination need to be aligned! 49

Can you code the vector copy
better by hand?

...maybe you could. I probably couldn't.

50

Summary

51

Zero-Cost Abstractions
Broadly try to fulfill two goals:

Do not affect the runtime/complexity of the language if unused
Are nearly as efficient as handwritten versions of the same code

Some abstractions that don't qualify:

Heterogeneous
Collections

Force layout changes in
data structure that affect all

usages of that collection

Garbage
Collection

All data must be collected
by the GC, even if we know

exactly when it can be
safely collected

 Green Threads

Can opt not to use them,
but implementation must

remain in the language
runtime

52

Zero-Cost Abstractions in C++

std::vector std::unique_ptr

Uses compile-time information to
make operations just as fast as

handwritten counterparts

Uses no more memory and is
essentially no slower than a raw

pointer.

Vector copy scheme is faster than naive
handwritten code!

53

Notecards

Name and EID
One thing you learned today (can be "nothing")
One question you have about the material. If you
leave this blank, you will be docked points.

If you do not want your question to be put on Piazza,
please write the letters NPZ and circle them.

54

