CS 105C: Lecture 2

Questions!

Q: Why is it that we sometimes use the ::
operator and sometimes use the . operator?

1
2
3
4
5
6
7
8

Dog: :standardNumTeeth;

14 dl.numTeeth;

Questions!

Q: Why can compiler optimization change the
meaning of a program when pipeline
optimization can not?

A: In a legal sense, compiler optimization
just exposes a broken program as broken.

A: Pipeline optimization can also break incorrect assembly
programs! (In particular, multithreaded programs that do
not properly use synchronization)

CS 105C: Lecture 2

Pointers, References, and Classes

Basics of Memory

Memory in a C++ Program

One giant array

Each element is one byte large

(LTI TTTTTTTTTITTTT]

0,1, 2 e ADDR_MAX

Numbering starts at O and runs to the size
of the address space.

Memory in a C++ Program

Creating a variable uses up some of this memory
For most variables, this takes place at variable declaration

size of x

8, 1, 2 00 ADDR_MAX

address of x

We say that the index of the first byte is
the address of the variable, and the
number of bytes it takes up is its size

Memory in a C++ Program

ADDR_MAX

4
* addr x = &X

Name

Address

10

12

14

16

Name

Address

10

12

14

16

10

Name

Address

11

Name

Address

12

Name Type Address
X int 9

Name Type Address
X int 9

Name Type Address
X int 9

Name Type Address
X int 9

Name Type Address
X int 9
SZ_X Size t 13

17

Name Type Address
X int 9
SZ_X Size t 13

18

Name Type Address
X int 9
SZ_X Size t 13

19

Name Type Address
X int 9
SZ_X Size t 13

20

Name Type Address
X int 9

SZ_X Size t 13
addr_x int* 3

21

Name Type Address
X int 9

SZ_X Size t 13
addr_x int* 3

22

Name Type Address
X int 9

SZ_X Size t 13
addr_x int* 3

23

Name Type Address
X int 9

SZ_X Size t 13
addr_x int* 3

24

Name Type Address
X int 9

SZ_X Size t 13
addr_x int* 3

25

Name Type Address
X int 9

SZ_X Size t 13
addr_x int* 3

26

Pointers 101

Pointer Types

*X;

Dog* fido;

Any type X can be modified by adding a *,
denoting a pointer to that type.

Pronounced "pointer-to-X", or if the type is
not important, just "pointer”.

1
2 Dog* old dan, little ann;
3

4
5 Dog *old dan, *little ann;

28

Operations on Pointers

Dereference:; read the address, then read/write that address.

3;
X;

y = 10;
std: :cout << x; std: :cout << x;

29

Name Type Address
X int 0
y Nt Z

30

Name Type Address
X int 0
y Nt Z

31

Name Type Address
X int 0
y Nt Z

32

Name Type Address
X int 0
y Nt Z

33

Name Type Address
X int 0
y Nt Z

34

Name Type Address
X int 0
y Nt Z

35

Name Type Address
X int 0
o int * 4

36

Name Type Address
X int 0
o int * 4

37

Name Type Address
X int 0
o int * 4

38

Name Type Address
X int 0
o int * 4

39

Name Type Address
X int 0
o int * 4

40

Name Type Address
X int 0
o int * 4

41

Name Type Address
X int 0
o int * 4

42

Name Type Address
X int 0
o int * 4

43

changeInput (
Xx + 5;

Pass-by-pointer

x){ changeInput (
*X = *x + 5;

}

* x) A

44

A Very Special Pointer

A null pointer is a pointer which does not point to anything.

Dereferencing a null pointer is undefined behavior.

45

Problem!

What state is this code in after each line

7,8,9,10? Assume variables are 4 bytes
large and allocated in the declared order.

** ptrptr
* ptrl =
* ptr2

X = 3;

y = 4;

ptrl = &y;

ptr2 = &x;
ptrptr = &ptr2;
**ptrptr = 2;

1
2
3
4
5
6
7
8
9
0

46

Pointers and UB

It is very easy to accidentally invoke UB using pointers.

Things that can invoke this include:

Dereferencing a null pointer

Dereferencing an invalid pointer

Accessing memory through an incorrectly-typecasted pointer
Using pointers to modify constant variables

Comparing pointers in the "wrong" manner

Using a pointer after the memory it points to is no longer valid

...and many more!

47

Instructor@CSsS105C

> 1

48

Pointers

There is a /ot more to learn about
pointers, but this will do for now.

Declared with type*

A number that refers to (points to) a byte in memory
Get pointer to value by using address-of (&) operator
Get value pointed-to by using dereference (*) operator

Can be dangerous: NULL pointers or bad pointers
cause awful behavior

49

References

References

A large number of pointer bugs arise because of
two facts about pointers:

e Pointers can be NULL
e Pointers can be arbitrarily reassigned

But they're still very powerful! Can we create a construct that
offers 99% of the power of pointers while being much, much
safer to use?

51

X = 3;

& r = Xy
r = 10;
std::cout << x;

References

* p = &Xj;
10;
::cout << Xxj;

ref x is another name for x

52

References

X = 3
& ref x = x;

3 ref x = 10;
std: :cout << x;

Name Type Address
X Int 0
r Int & 0

53

}

Pass-by-Reference

changeInput (x){ changeInput (
X = X + 5; X =X + 5;

}

& x){

54

Reference vs. Pointer

References Pointers
e Must be initialized on creation e Can be uninitialized
e Cannot be NULL (or UB happens) e Can be NULL

e Cannot be changed once bound e Can be reassigned at will

55

C++ Classes + Objects
Part 1

What are classes good for?

e Encapsulation: group related functions/data together
e Abstraction: allow user of code to specify what should
be done instead of how to do it.

57

Example Class Declaration

Class();
Class() ;
somethingPublic();

1
2
3
4
5
6
7
8

* other;
& other?2;
somethingPrivate();

58

Example: Space Invaders

00 o Ul WD

Attempt #1

main(){
std: :vector< laser x;
std::vector< laser_ y;

std: :vector< alien x;
std: :vector< alien y;

(i = 0; 1 < MAX ALIENS; i++){
alien x.push back(gen initial alien x(i));
)

alien y.push back(gen initial alien y(1i)

°
14

() {
readInput();

update(laser x,laser y,alien x,alien y);

60

Issues:

Possible to desynchronize the lists
Maybe coordinates need to be checked
before writing!

Conceptually, not grouping related data
together.

No simple way to initialize a new
laser/alien.

61

0O o Ok WDN =

Laser {

Point pos;
length;

Alien {

Point pos;
size;

main(){

std: :vector<Alien> aliens;

(i = 0; i < ALIEN MAX; i++)({

Alien a;
Point p;

p . Xpos .0;
p.yYpoOS .0;
a.pos = p;
a.length Lolg
aliens.push back(a);

Solved:

e Possible to desynchronize the lists
e Not grouping related data together

Not solved:

e No simple way to initialize a new
laser/alien.

62

Constructors

Special functions whose job it is to construct the object.
These can be overloaded like normal functions.

Point{
XpOsS;
YPOS;

Point();

Point (X,

Point (Pointé&
}i

1
2
3
4
5
6
7
8

63

How to use a Constructor

Two ways to call a constructor:

1 Point p1(1.0,2.0);
2

3 Point p2 = Point(1.0, 2.0);

Do not do the following!

1

2 Point point = Point (1.0, 2.0);

The 'new' keyword in C++ has a very special
meaning--do not just randomly sprinkle it
in, or things will go bad very quickly!

64

Special Constructors

Point();
Point (X, y)i

Point (Point& other);

Default Constructor

If the class is ever initialized with a default
value, the default constructor is called.

std: :vector<Point> Points(100);

65

1
2
3
4
5
6
7

Special Constructors

Point();
Point (X, y)i

Point (Point& other);

Copy Constructor

Responsible for implementing a value
copy.

Point p1(1.0,1.0);

Point p2(pl);

66

Example Implementations

Point::Point() : xpos(0), ypos(0) { }

Point: :Point(X, y) : xpos(x), ypos(y) { }

Point: :Point(& Point o) : xpos(o.xpos), ypos(o.ypos) { }

67

1
2
3
4
5
6
7
8

...or maybe we're feeling lazy.

7
XI
Point&

68

0O O Ul WLWDN B

}

4

X, Y)i
Point& other) =

Laser {

Alien {
Alien()
Alien(Point p);

main(){
Point p1(1.0,2.0);
Alien sane(pl);

Alien sane(Point(1.0,2.0));

69

1 Point { Solved:
2 Xpos;
3 YPOS;
4
5 Point() = ; e Possible to desynchronize the lists
6 Point (X, Y)i]
7 Point(Points& other) = - e Not grouping related data together
©b e Simple way to initialize a new
Laser { ... }; laser/alien.
Alien {
Aiien() =
Alien(Point p);
}i
main(){
Alien crazy(Point(1000000, -1110010101));
} Not Solved:

e Position checks!

Methods

The Problem

Our game entities have to remain within some
fixed box: the positions can't be arbitrary!

Secondary, but still important: need to resolve
collisions (laser collision with alien = remove alien)

72

Solution: Write a method to check!

Point{
Xpos;
Ypos;

isInbounds (Point lowerleft,
Point upperright);

1
2
3
4
5
)
7
8

Point::isInbounds(Point 11, Point ur)/{
(xpos < ll.xpos){ }
(ypos < ll.ypos){ }

(ypos > ur.ypos){ }

14

Laser {

Poiné pPoOS;
length;
Laser() = ; As long as these values are

Laser (Point p);

Laser Lasers other) = : public, we can never assume
that the position is valid!

00O o Ul s WLWDN K

Alien {

Point pos;
size;
Alien() = ;
Alien(Point p);
Alien(Alien& other);

1 Alien a(Point(1.0,2.0));
2 a.pos = Point(100000,300000);
3 a.run game logic();

Laser { 1 Alien a(Point(1.0,2.0));
Point pos; D 2 a.pos = Point(100000,300000);

Laser() =
Laser (X, Y,
Laser (Laser& other) =

00O o Ul s WLWDN K

Point getPosition(
setPosition

°
4
°
4

Alien {

size; Y

.) g+ test.cpp
Alien() . test.cpp: In function ‘int main()’:

. r test.cpp:22:5: error: ‘Point Alien ::pos’ is private within this context
Alien(X, V)i 22 | a.pos = Point(100000,300000);

N

Alien(Alien& other); I ~
test.cpp:8:11: note: declared private here

: .. 8 | Point pos;
Point getPosition(| o

setPosition

Operators

World {

Point alienBlock;

1
2
K
4
5
6
7
8

Alien {
Point offset;
Point* block;

Point getPosition(){

Aliens move as a block.

Maybe it's easier to have a single Point

represent the position of the block, then

have each alien's position represent an
offset from that block.

std::vector<Alien> aliens;

77

Solution with Methods

main(){
Point pl, p2, p3, p4;
Point{

Point add(Point other); Point pfinal = pl.add(p2.scale(2).add(p3)).add(p4);
}i

Point Point::add(Point other){

X = xXpos + other.xpos;

y = ypos + other.ypos;
Point(x,y);

1
2
3
4
5
)
7
8

main(){
Point pl, p2, p3, p4;

Point pfinal = pl + (p2 * 2 + p3) + p4;

78

0O o Ul WDN -

Let's use operators instead!

Point{

Point add(Point other); +(Point other);

Point Point::add(Point other){
X = xpos + other.xpos;

Point Point:: +(Point other){
X = xXpos + other.xpos;

0O o Ul WDN -

y = ypos + other.ypos; y = ypos + other.ypos;
Point(x,y); Point(x,y);

main(){
Point pl, p2;

Point p3 = pl + p2;
Point p4 = pl.add(p2);

79

0O o0l WDN B

This technique of specializing behavior of an operator is
known as operator overloading, because you're

overloading the behavior of the operator based on types.

The first argument to the operator is the class whose
operator method will be invoked. The second is the
argument(s) to the operator.

Point{ ...

ostream & <<(std::ostream &os, Point p) {
<< ("5
<< p.Xpos;
<< "
<< pP.Yypos;
<< ")
0s;

main(){
Point p1(2.0,3.0);
Point p2(0.0,-3.0);
std::cout << pl << '\n'
<< p2 << std

80

Still a few strange warts...

main(){
Point pl, p2, p3, p4;

Point pfinal + (p2 * 2 + p3) + p4;
main(){

Point pi, 02, p3, p4;

Point pfinal + (2 * p2 + gR) + p4;

Point pl, p2, p3, p4;

Point pfinal = pl.add(p2.scale(2).add(p3)).add(p4);

81

Inheritance

Inheritance is a mechanism to reuse code and model problems.

Animal { ... };

Dog : Animal {

Animal {

83

Overriding

Subclasses can override the methods of their superclass.

Animal {

makeNoise () {
std::cout << "I'm an animal" << '\n';

} user@csiesc> |

1
2
3
4
5
6
7
8

Animal {

makeNoise () {
std::cout << "I'm a Dog" << '\n';

}

main(){
Animal a;
b;

a.makeNoise();
b.makeNoise();

...but something's funny here.

Animal {

makeNoise () {
std::cout << "I'm an animal" << '\n';

0O O Ul s WDN -

Dog : Animal {
user@Cs1es5C> |
makeNoise () {
std::cout << "I'm a Dog" << '\n';

}

main(){
Animal a;
Dog b;
Animal c = Dog();

a.makeNoise();
b.makeNoise();
c.makeNoise();

Summary

Pointers

A method for manipulating memory in C++

Dereferencing the pointer tells the language to use the
memory |location "pointed to" by the pointer.

Have their own special syntax and types.

Very easy to accidentally invoke UB with.

87

References

A modern alternative to pointers in C++

Allow us to have many of the benefits of pointers
without their drawbacks.

Have a special type, but once declared, can be used
like normal variables.

88

Classes

A mechanism to bundle related
data/functions together while hiding
some of it from outside eyes.

Constructors

A special function whose
responsibility is to initialize an object.

Some special constructors are used
by the language in some situations.

We can (should) use special initialization
syntax in the constructor.

Methods

A function attached to a class. It can
access all the classes private members.

Can be written as an operator
overload, in which case it will be called
if the appropriate operator is called on

the class.

89

Announcements!

Project O is due next week

Notecard:

e EID and Name
e Something new you learned (can be "nothing")
e A question you have (cannot be "none")

90

