CS 105C:; Lecture 3

Memory in a C++ Program

ADDR_MAX

4
* addr x = &X

Pointers And References

e Pointers hold the address of e References are another name
a variable. for a variable.

e Created by the address-of e Created by simple
operator. assignment.

e Access address pointed-to by e Use reference like any normal
pointer by defererencing. variable, except that it can

change other variables!

std::cout << x;

Pointers And References

Similarities

Differences

Implemented by storing the address
of a variable.

Can be used to modify function
arguments

Can be used to avoid the overhead
of a large-structure copy

Can lead to undefined behavior

Pointers can be uninitialized/NULL
References cannot be either of these.
Pointers can be reassigned at will
Once declared, references cannot be
rebound

Pointers can exhibit UB in many more
situations

References do not require any
additional syntax (*/&)

Unless you need a pointer, use a reference.

Questions!

Q: What is the purpose of types like size_t?
Why not just use an unsigned int?

A: Expressiveness.

d=x-1yj

(abs(d) < s){ (abs(d) < s){

O 00O OO WD -

1
2
3
4
5
6
7
8
9

Questions!

Q: How do you know when you need a pointer?

A: If you need to be able to reassign pointers, use a pointer.

[[[[
Lt Lt » L

Questions!

Q: Why do you sometimes initialize a
pointer to the reference of a variable?

A: Hold up.

Symbol in type Symbol in value

Pointer to dereference
Reference to address-of

Questions!

Q: How do | get better at using pointers?

CS 105C; Lecture 3

Overview of Classes

Constructors
Methods
Operators
Const
Inheritance

C++ Classes + Objects
Part 1

What are classes good for?

e Encapsulation: group related functions/data together
e Abstraction: allow user of code to specify what should
be done instead of how to do it.

11

Example Class Declaration

1
2
3
4
5
6
7
8

Class();

Class() ;

~Class();
somethingPublic();

* other;
& other2;

somethingPrivate();

12

Example: Space Invaders

00 o Ul WD

Attempt #1

main(){
std: :vector< laser x;
std::vector< laser_ y;

std: :vector< alien x;
std: :vector< alien y;

(i = 0; 1 < MAX ALIENS; i++){
alien x.push back(gen initial alien x(i));
)

alien y.push back(gen initial alien y(1i)

°
14

() {
readInput();

update(laser x,laser y,alien x,alien y);

14

0O o Ok WDN =

Laser {

Point pos;
length;

Alien {

Point pos;
size;

main(){

std: :vector<Alien> aliens;

(i = 0; i < ALIEN MAX; i++)({

Alien a;
Point p;

p . Xpos .0;
p.yYpoOS .0;
a.pos = p;
a.length Lolg
aliens.push back(a);

Solved:

e Possible to desynchronize the lists
e Not grouping related data together

Not solved:

e No simple way to initialize a new
laser/alien.

15

Constructors

Special functions whose job it is to construct the object.

These can be overloaded like normal functions.

X, Y)i
Point& other);

1
2
3
4
5
6
7
8

Constructors are always named the same as the class.

16

How to use a Constructor

Two ways to call a constructor:

1 Point p1(1.0,2.0);
2

3 Point p2 = Point(1.0, 2.0);

Do not do the following!

1

2 Point point = Point (1.0, 2.0);

The 'new' keyword in C++ has a very special

meaning--do not just randomly sprinkle it in,

or things will go bad very quickly!

17

Special Constructors

Default Constructor

Point();
Point (X, y)i

Point (Point& other);

A constructor that takes no parameters

If the class is ever initialized with a default
value, the default constructor is called.

std: :vector<Point> Points(100);

19

1
2
3
4
5
6
7

Copy Constructor

Point();
Point (X, Y)i

Point (Point& other);

Responsible for implementing a value copy.

Point p1(1.0,1.0);

Point p2(pl);

20

All Special Members

e Default Constructor

e Destructor

e Copy Constructor

e Copy Assignment Operator
e Move Constructor

e Move Assignment Operator

Example Implementations

Initializer List Syntax

Point::Point() : xpos(0), ypos(0) { }

Point: :Point(X, y) : xpos(x), ypos(y) { }

Point: :Point(& Point o) : xpos(o.xpos), ypos(o.ypos) { }

When we hit this bracket, C++ expects
all class members to be initialized.

22

0O ~Jo U1l WD K-

Example Implementations

~/t/C+

> g+ test2.cpp

test2.cpp: In constructor ‘Test ::Test(Point)’:

test2.cpp:11:16: error: use of deleted function ‘Point ::Point()’
11 | Test(Point p){

|
test2.cpp:4:3: note: declared here

4 | Point() = delete;

| Pt Pt P

Point pt;
Z;

Test (Point p){ . . .
pt = p; When we hit the opening brace, C++ tries to

= 2.0; initialize all members. Since Point has no default

constructor, this fails on the brace.

23

1
2
3
4
5
6
7
8

O

10
11
12 };

Example Implementations

This time when we hit the curly brace, pt
has already been initialized (by the
initializer list), so this code works fine.

Point pt;
Z;

Test (Point p) : pt(p), z(2.0) {}

24

Point{

Point (

Modifications to Constructors

Pointé Constructor must be called explicitly.

Use the compiler-generated version of the

Pointé& other) constructor

Prevent anyone from using this
constructor

Point& other)

25

Destructors

Class{

Class();
~Class();

}i:

Class::~Class(){

1
2
3
4
5
§)
7
8
9

}

Destructors called automatically when a class is destroyed
(usually by going out of scope).

For example, a linked list destructor needs to free all its nodes.

26

1 Point { Solved:
2 Xpos;
3 YPOS;
4
5 Point() = ; e Possible to desynchronize the lists
6 Point (X, Y)i]
7 Point(Points& other) = - e Not grouping related data together
©b e Simple way to initialize a new
Laser { ... }; laser/alien.
Alien {
Aiien() =
Alien(Point p);
}i
main(){
Alien crazy(Point(1000000, -1110010101));
} Not Solved:

e Position checks!

Methods

The Problem

Our game entities have to remain within some
fixed box: the positions can't be arbitrary!

Secondary, but still important: need to resolve
collisions (laser collision with alien = remove alien)

29

Solution: Write a method to check!

Point{
Xpos;
Ypos;

isInbounds (Point lowerleft,
Point upperright);

1
2
3
4
5
)
7
8

Point::isInbounds(Point 11, Point ur)/{
(xpos < ll.xpos){ }
(ypos < ll.ypos){ }

(ypos > ur.ypos){ }

14

Laser {

Poiné pPoOS;
length;
Laser() = ; As long as these values are

Laser (Point p);

Laser Lasers other) = : public, we can never assume
that the position is valid!

00O o Ul s WLWDN K

Alien {

Point pos;
size;
Alien() = ;
Alien(Point p);
Alien(Alien& other);

1 Alien a(Point(1.0,2.0));
2 a.pos = Point(100000,300000);
3 a.run game logic();

Laser { 1 Alien a(Point(1.0,2.0));
Point pos; 2 a.pos = Point(100000,300000);
length; 3 a.run _game logic();

Laser() =
Laser (X, Y,
Laser (Laser& other) =

0O o O WD B

Point getPosition()
setPosition()

°
14
o
14

Alien {

size; Y

-) g+ test.cpp

Alier.l() _ . test.cpp: In function ‘int main()’:
i _ ! test.cpp:22:5: error: ‘Point Alien ::pos’ is private within this context
Alien(Point& p); 22 | a.pos = Point(100000,300000);

N

Alien(Alien& other); I =
test.cpp:8:11: note: declared private here

. .. 8 | Point pos;
Point getPosition(| o

setPosition

Use these methods in constructor

1 Alien::Alien(Point& p) : pos(p), size(l.0) {

2 (!p.isInbounds()){

3 std::invalid argument("Alien was created out of bounds");
4

5

}
}

33

Operators

World {

Point alienBlock;

1
2
K
4
5
6
7
8

Alien {
Point offset;
Point& block;

Point getPosition(){

Aliens move as a block.

Maybe it's easier to have a single Point

represent the position of the block, then

have each alien's position represent an
offset from that block.

std::vector<Alien> aliens;

35

Solution with Methods

main(){
Point pl, p2, p3, p4;
Point{

Point add(Point other); Point pfinal = pl.add(p2.scale(2).add(p3)).add(p4);
}i

Point Point::add(Point other){

X = xXpos + other.xpos;

y = ypos + other.ypos;
Point(x,y);

1
2
3
4
5
)
7
8

main(){
Point pl, p2, p3, p4;

Point pfinal = pl + (p2 * 2 + p3) + p4;

36

0O o Ul WDN -

Let's use operators instead!

Point{

Point add(Point other); +(Point other);

Point Point::add(Point other){
X = xpos + other.xpos;

Point Point:: +(Point other){
X = xXpos + other.xpos;

0O o Ul WDN -

y = ypos + other.ypos; y = ypos + other.ypos;
Point(x,y); Point(x,y);

main(){
Point pl, p2;

Point p3 = pl + p2;
Point p4 = pl.add(p2);

37

0O o0l WDN B

This technique of specializing behavior of an operator is
known as operator overloading, because you're

overloading the behavior of the operator based on types.

The first argument to the operator is the class whose
operator method will be invoked. The second is the
argument(s) to the operator.

Point{ ...

ostream & <<(std::ostream &os, Point p) {
<< ("5
<< p.Xpos;
<< "
<< pP.Yypos;
<< ")
0s;

main(){
Point p1(2.0,3.0);
Point p2(0.0,-3.0);
std::cout << pl << '\n'
<< p2 << std

38

Still a few strange warts...

main(){
Point pl, p2, p3, p4;

Point pfinal + (p2 * 2 + p3) + p4;
main(){

Point pi, 02, p3, p4;

Point pfinal + (2 * p2 + gR) + p4;

Point pl, p2, p3, p4;

Point pfinal = pl.add(p2.scale(2).add(p3)).add(p4);

39

Side Note: This

C++ gives us a special keyword "this " to refer to the current
object (similar to "this inJava and "self " in Python)

Slight complication: "this " is a pointer!

A{
A* another;

selfAssign(){

another =

}

40

const

const

const is a keyword that tells us that something is read-only.*

> g+ test2.cpp
test2.cpp: In function ‘int main()’:
test2.cpp:10:7: error: assignment of read-only variable ‘y’

10 | S

| Fal

* For "known at compile-time," see keyword constexpr

42

const

What's read-only? Depends on the position of the const keyword!

43

const

What's read-only? Depends on the position of the const keyword!

5 test(& z) 3
const value

const pointer

const method
const reference

44

45

46

47

48

49

r

we

e

50

Class {

myMethod ()

51

*almost

Conversion Rule:

You can add const, but you
can't remove it.

0O O Ul WDN K

myMethod (Z)
std::cout << x+z;

otherMethod (z){
X + z;

B(A a, c) : a(a), c(c) {}

myMethod (z) {
std::cout << ¢ + z;

}

otherMethod (vARE
a.x = z;
c + z;

0O O Ul WDN B

main(){
A al;
A a2;

B bl;
B b2(a2, 3);
B b3(al, 3);

0;

.myMethod(1i);
.otherMethod (1) ;

.myMethod(1i);
.otherMethod(1i);

.a.X = b2.otherMethod(i);
.a.Xx = b3.otherMethod(i);
.a.otherMethod(i);

consttest.cpp: In function ' main()’:
consttest.cpp:45:19: error: passing argument discards qualifiers [-fpermissive]
45 | a2.otherMethod(i);

consttest.cpp:49:28: error: passing '’ argument discards qualifiers [-fpermissive]
49 | b3.a.x = b3.otherMethod(i);

| A

OO0 0k W

consttest.cpp:49:10: error: assignment of member in read-only object
49 | b3.a.x = b3.otherMethod(i);
|
consttest.cpp:51:21: error: passing argument discards qualifiers [-fpermissive]
51 | b3.a.otherMethod(i);

| A

main(){
A al;
A a2;

B bl;
B b2(a2, 3);
B b3(al, 3);

1
2
3
4
5
)
7
8

B()

(0 B(A a, c) : a(a), i=20;

myMethod (Z)
std::cout << x+z;

}

0O o0 WN K-
0O o 0 WD -

myMethod (z) al.myMethod(1i);

std::cout << c + z; al.otherMethod(1i);
otherMethod (AR

X + z;

}
otherMethod (AR a2 .myMethod(1i);

a.x = z; a2.otherMethod(1i);
c + z;
b2.a.x b2.otherMethod(1i);
b3.a.x = b3.otherMethod(i);
b3.a.otherMethod(1i);

Why const?

Why const?

Expresses your intent

Prevents accidental changes

Quite a few "safe" languages are const by default:

e Rust
e Haskell
e Scala

}

ReallyBigData;

doStuff (ReallyBigData d){
d.tryComputations();

}

ReallyBigData;

doStuff (ReallyBigData& d){
d.tryComputation();

}

ReallyBigData;

doStuff (ReallyBigData& d){
d.tryComputation();

57

example from CppCon 2017: Louis Brandy “Curiously Recurring C++ Bugs at Facebook”

Widget{

std: :map<string, > settings;

Widget (std: :map<string, > config) : settings(config) {
->logSettings();

1
2
3
4
5
6
7
8

logSettings () {

std::cout << "Widget settings are: " '\n'
<< "timeout = "
<< settings["timeout"]
<< l\nl

https://www.youtube.com/watch?v=lkgszkPnV8g

example from CppCon 2017: Louis Brandy “Curiously Recurring C++ Bugs at Facebook”

main () {
std: :example map<std::string,
std::cout << m["test"];

1
2
3
4
5
6
7
8

59

https://www.youtube.com/watch?v=lkgszkPnV8g

example from CppCon 2017: Louis Brandy “Curiously Recurring C++ Bugs at Facebook”
L]
Widget{
e o

std: :map<string, > settings;

Widget (std: :map<string, > config) : settings(config) {
->logSettings();
}

logSettings () {

std::cout << "Widget settings are:
<< "timeout = "
<< settings["timeout"]
<< l\nl

What if "timeout” isn't in settings?

https://www.youtube.com/watch?v=lkgszkPnV8g

example from CppCon 2017: Louis Brandy “Curiously Recurring C++ Bugs at Facebook”
L]
Widget{
e o o

std: :map<string, > settings;

Widget (std: :map<string, > config) : settings(config) {
->logSettings();
}

logSettings () {

std::cout << "Widget settings are: " '\n'
<< "timeout = "
<< settings["timeout"]
<< I\nl

Fix: very simple!

https://www.youtube.com/watch?v=lkgszkPnV8g

const where you can!

e When passing by reference/pointer, everything should be
as-const-as-possible unless you need to be able to mutate
the argument

e All methods should be const unless they edit member
variables

e Arguments passed by value don't have to be const (since
you can't change them outside the function anyways), but
adding const may be helpful if you don't want to change
the value.

62

If you get a const error, do not blindly
remove const from the code!

Think about why you're getting the error, decide on an appropriate
fix, then start making code edits!

Blindly removing const can lead to very subtle runtime bugs.

63

Inheritance

Inheritance is a mechanism to reuse code and model problems.

Animal { ... };

Dog : Animal {

Animal {

65

Overriding

Subclasses can override the methods of their superclass.

Animal {

makeNoise () {
std::cout << "I'm an animal" << '\n';

} user@csiesc> |

1
2
3
4
5
6
7
8

Animal {

makeNoise () {
std::cout << "I'm a Dog" << '\n';

}

main(){
Animal a;
b;

a.makeNoise();
b.makeNoise();

...but something's funny here.

Animal {

makeNoise () {
std::cout << "I'm an animal" << '\n';

0O o Ul s WDN -

Dog : ER user@cs10sc> |
makeNoise () {
std::cout << "I'm a Dog" << '\n';

}

main(){
Animal a;
Dog b;
Animal c = Dog();

a.makeNoise();
b.makeNoise();
c.makeNoise();

}

Summary

Classes

A mechanism to bundle related
data/functions together while hiding
some of it from outside eyes.

Constructors

A special function whose
responsibility is to initialize an object.

Some special constructors are used
by the language in some situations.

We can (should) use special initialization
syntax in the constructor.

Methods

A function attached to a class. It can
access all the classes private members.

Can be written as an operator
overload, in which case it will be called
if the appropriate operator is called on

the class.

69

const

A poorly-named keyword that should have been called 'readonly’.
Specifies that data cannot be modified. Const types are usually
(but not always) compatible with their non-const counterparts.

You should use const as much as possible!

1
2
3
4
5
6
7
8
9

70

1
2
3
!
5
6
7
8

Inheritance

Allows classes to subtype and extend each other, increasing code reuse.

But the types don't quite behave the way they do in Java...

Animal {

makeNoise(){ std::cout << "I'm an animal" << '

Dog : Animal {

makeNoise(){ std::cout <<

main () {
Animal a;
Dog b;
Animal c¢ = Dog();

a.makeNoise();
b.makeNoise();
c.makeNoise();

This calls Animal::makeNoise()

71

Project 1

Goes out today, due in two weeks.

Simple breakout game--tests a lot of the OO stuff we've
talked about today and your basic OO programming skills.

hello_sdl2

72

Project 1 Notes

Most of your coding instructions will be in the code itself. You
will need to implement most of the functions in the headers
yourself.

Read the headers first to get an understanding of the overall
structure of the project and what you'll need to implement.

Once you have a feel for how the structure works, implement
all the functions in the corresponding cpp files.

Required to create same output on -O0 and -O3

73

Quiz

Our second in-class quiz will be next week.

Format will be similar (perhaps one or two extra problems), but you will have 10
minutes (double that of last time).

If you arrive too late, Canvas may decide to cut you off at 10 minutes after class start.

Topics: Basic Memory, Pointers, References, Classes, const (Lectures 2 + 3)

74

Notecards

e Name and EID

e One thing you learned today (can be "nothing")

e One question you have about the material. If you
leave this blank, you will be docked points.

If you do not want your question to be put on Piazza,
please write the letters NPZ and circle them.

75

