
CS 105C: Lecture 4

1

Constructors
Point p1(1.0,2.0);

Point p2 = Point(1.0, 2.0);

1
2
3

Point point = new Point(1.0, 2.0);1

Default Constructor
Copy Constructor
Move Constructor

class Point{
 ...
 explicit Point(const Point& other);
};

1
2
3
4

class Point{
 ...
 Point(const Point& other) = default;
};

1
2
3
4

class Point{
 ...
 Point(const Point& other) = delete;
};

1
2
3
4

struct Point{
 float x;
 float y;
 Point() = delete;
};

class Test{
 Point pt;
 float z;

 Test(Point p) : pt(p), z(2.0) {}
};

1
2
3
4
5
6
7
8
9

10
11
12

2

Methods + Operators

class A{
 A* another;

 void selfAssign(){
 another = this;
 }
};

1
2
3
4
5
6
7

Alien::Alien(const Point& p) : pos(p), size(1.0) {
 if(!p.isInbounds()){
 throw std::invalid_argument("Alien was created out of bounds");
 }
}

1
2
3
4
5

class Point{
 ...
 Point operator+(Point other);
 ...
};

int main(){
 Point a;
 Point b;
 Point c = a + b;
}

1
2
3
4
5
6
7
8
9
10
11

3

Const

const int * const test(const int& z) const;

A method called "test" which

takes in a readonly reference-to-integer
returns a readonly pointer to a readonly integer
does not modify any class members.

4

Questions!

5

Questions

Q: Why would you want to declare your data as
const? Isn't the whole point of the program to

mutate data?

A1: The goal of your program is to mutate data at very specific
points in the execution of the program. Accidentally mutating
other pieces of data is usu ally either a design flaw or a bug.

A2: Backwards compatibility.

Related: if const is so great, why isn't it default?

6

Questions

Q: Why would you want to declare your data as const?

A3: Haskell!

main = do
 x <- getLine
 let n = read x ::Integer
 forM_ [1..n] procLine

procline = do
 x <- getLine
 let (c,f) = (maximumBy cmpPair . getFreqs) x
 print([c] ++ " " ++ show f)

getFreqs = map (\x -> (head x, length x)) . group
 . sort . map toLower . filter isAlpha

cmpPair (c1,f1) (c2,f2) =
 let x = compare f1 f2
 in case x of
 EQ -> compare (ord c2) (ord c1)
 _ -> x

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 7

Questions

Q: How can I catch program constructs that
cause differences between -O0 and -O3?

A: See Lecture 1: "How do we Avoid UB?"

Tools:

Valgrind
ASan
UBSan

8

http://valgrind.org/
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

CS 105C: Lecture 4

Overview of Inheritance

9

Last time...
class Animal {
 ...
 void makeNoise(){
 std::cout << "I'm an animal" << '\n';
 }
}

class Dog : public Animal {
 ...
 void makeNoise(){
 std::cout << "I'm a Dog" << '\n';
 }
}

int main(){
 Animal a;
 Dog b;
 Animal c = Dog();

 a.makeNoise();
 b.makeNoise();
 c.makeNoise();
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

10

Polymorphism

πολύς, "much", "many" μορφή, "shape", "form"

11

Polymorphism

In programming: the ability to present the same interface
for many different underlying datatypes (shapes).

12

int main(){
 Animal a;
 Dog b;
 Animal c = Dog();

 a.makeNoise();
 b.makeNoise();
 c.makeNoise();
}

1
2
3
4
5
6
7
8
9

Is this code polymorphic?

YES
13

int main(){
 Animal a;
 Dog b;
 Animal c = Dog();

 a.makeNoise();
 b.makeNoise();
 c.makeNoise();
}

1
2
3
4
5
6
7
8
9

Is this code polymorphic?

Using the same function call on different
types: clearly polymorphism!

But type information is determined at compile-time.

This type of polymorphism
 is know as compile-time

polymorphism or early binding.

Java-style polymorphism
 is know as runtime

polymorphism or late binding.

14

In C++, classes can only be runtime
polymorphic when invoked

through a reference or pointer.

Also, the function has to be declared virtual in the base class
¯_(ツ)_/¯ 15

class Animal {
 ...
 virtual void makeNoise(){
 std::cout << "I'm an animal" << '\n';
 }
}

class Dog : public Animal {
 ...
 void makeNoise(){
 std::cout << "I'm a Dog" << '\n';
 }
}

int main(){
 Animal animal;
 Dog doggo;

 Animal& a = animal;
 Dog& b = doggo;
 Animal& c = doggo;

 a.makeNoise();
 b.makeNoise();
 c.makeNoise();
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

16

class Animal {
 ...
 virtual void makeNoise(int x){
 std::cout << "Animal has " << x << '\n';
 }
}

class Dog : public Animal {
 ...
 void makeNoise(long x){
 std::cout << "Dog has " << x << '\n';
 }
}

int main(){
 Animal animal;
 Dog doggo;

 Animal& a = animal;
 Animal& b = doggo;

 a.makeNoise(5);
 b.makeNoise(7);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Do you see the bug?

17

class Animal {
 ...
 virtual void makeNoise(int x){
 std::cout << "Animal has " << x << '\n';
 }
}

class Dog : public Animal {
 // This will now compile-time error
 void makeNoise(long x) override {
 std::cout << "Dog has " << x << '\n';
 }
}

int main(){
 Animal animal;
 Dog doggo;

 Animal& a = animal;
 Animal& b = doggo;

 a.makeNoise(5);
 b.makeNoise(7);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Do you see the bug?

Solution: specify to the compiler that we
intend for this method to override a

superclass method!

18

Other OOP Structures

19

Abstract

In Java, an abstract method is a method
which does not have an implementation,

and must be overridden by a subclass.

In C++, these are called pure virtual
methods and are declared with an `=0` in

the code

class PureVirtual {
 virtual void virtMethod() = 0;
};

1
2
3

Java also has the concept of an abstract class, which cannot
be instantiated. In C++, an abstract class is any class with at

least one non-overridden pure virtual function.
20

final
class A {
 ...
};

// This class can no longer be subclassed
class B final : public A {
 ...
};

// Compile-time error
class C : public B {
 ...
};

1
2
3
4
5
6
7
8
9
10
11
12
13

Indicates that a class/method can no longer be inherited
from/overridden. Works pretty much like in Java.

21

Multiple Inheritance
class A {
 ...
};

class B {
 ...
};

// Yuck
class C : public B, public A {
 ...
};

1
2
3
4
5
6
7
8
9
10
11
12

Allows us to inherit from multiple classes at once. Usually,
the parent classes are pure virtual, and this is a hack used to

implement interfaces.

HUGE set of potential bugs: don't do this unless you know
what you're doing! 22

Protected Members
Private members are not available to children of a class!

In order to allow children to access the members of a class
but still disallow public access, C++ has a protected access

specifier.

class A {
 public:
 int x;

 protected:
 int y;

 private:
 int z;
};

1
2
3
4
5
6
7
8
9
10

23

Non-public inheritance

class A {
 ...
};

class B : public A {
 ...
};

1
2
3
4
5
6
7

(Rarely ever used)

Public A -> Public B
Protected A -> Protected B
Private A are inaccessible

class A {
 ...
};

class B : protected A {
 ...
};

1
2
3
4
5
6
7

Public and protected
members of A become

protected members of B.

class A {
 ...
};

class B : private A {
 ...
};

1
2
3
4
5
6
7

Public and protected
members of A become
private members of B.

24

The One True Style™

25

C++ has a long history

1978: Bjarne Stroustrup invents C with Classes

1983: C with Classes is renamed to C++

1990: First Major C++ Compilers come out

1998: First official C++ Standard (C++98)

2003: Another C++ Standard? (C++03)

2011: Another C++ Standard (C++11)
2014: Another C++ Standard! (C++14)
2017: Another C++ Standard?!? (C++17)
2019: Yet Another C++ Standard... (C++20)
In progress: Another C++ standard (C++2b)

YOU ARE HERE

Photo credit: https://winworldpc.com/product/borland-c/5x
26

With new tools come new styles...

for(int i = 0; i < 100; i++){
 ...
}

1
2
3

for(auto i = 0; i < 100; i++){
 ...
}

1
2
3

Almost Always Auto
You should always declare variables
as auto unless there is a technical

reason not to.

Everyone Else
...what is wrong with you?

27

With new tools come new styles...

for(int i = 0; i < 100; i++){
 ...
}

1
2
3

for(auto i = 0; i < 100; i++){
 ...
}

1
2
3

Almost Always Auto
You should always declare variables
as auto unless there is a technical

reason not to.

Everyone Else
...what is wrong with you?

28

How should we write our
C++ programs?

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

29

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

Can you keep track of one global variable in 100 lines of code?

Can you keep track of 10 global variables in 10,000 lines of code?

Can you keep track of 10,000 global variables in millions of lines of
(multithreaded) code?

Toyota thought they could.

They were wrong.
30

http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%E2%80%9Cspaghetti%E2%80%9D-code

// Finds first 0-1 crossover index
int find(std::vector<int> x){
 // Assume x[0] = 0 and x[last] = 1
 int b = 0; // Set b to be zero
 int e = x.size(); // Set e to the size of x
 // While e - b is nonzero, enter the loop again
 while(e - b > 1){
 int z = e - b / 2; // Set z to be half of e - b
 if(x[z] == 0){
 b = z; // If value is zero, update b
 }else{
 e = z; // Otherwise, update e
 }
 }
 return b; // returns b
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Please stop doing this!

NL.1: Don’t say in comments what can be clearly stated in code

31

// Find an index i in an array such that arr[i] = 0 && arr[i+1] = 1
int find_zeroone(const std::vector<int>& toSearch){
 // Without this condition, the index may not exist
 assert(toSearch.front() == 0 && toSearch.back() == 1);

 // We search by iteratively narrowing the (left,right) window
 // so that the left endpoint is always zero and the right is one
 int left = 0;
 int right = x.size();
 // If (right - left) is one, we've found the point!
 while(right - left > 1){
 int midpoint = (right - left) / 2;
 if(toSearch[midpoint] == 0){
 left = midpoint;
 }else{
 right = midpoint;
 }
 }
 return b;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

NL.1: Don’t say in comments what can be clearly stated in code

32

int count = 0;
for (int i = 0; i < v.size(); ++i) {
 if (v[i] == val) {
 count++;
 }
}

1
2
3
4
5
6

int count = 0;
for (const auto& elem : v) {
 if (elem == val) {
 count++;
 }
}

1
2
3
4
5
6

int count = std::count(v.begin(), v.end(), val);1

Bad

Better

Best

P.1: Express ideas directly in code P.3: Express intent

33

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-direct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rp-what

P.1: Express ideas directly in code P.3: Express intent

for (int i = 0; i < v.size(); ++i) {
 ...
}

1
2
3

for (const auto& elem : v) {
 ...
}

1
2
3

for (auto& elem : v) {
 ...
}

1
2
3

34

max = 0;
count = 0;
for(int i = 0; i < NUM_LETTERS; i++){
 if(freq[i] > max){
 max = i;
 count = freq[i];
 }
}

1
2
3
4
5
6
7
8

max = 0;
count = 0;
// Implicitly break ties by choosing the lower-valued
// character, which is required in this program
for(int i = 0; i < NUM_LETTERS; i++){
 if(freq[i] > max){
 max = i;
 count = freq[i];
 }
}

1
2
3
4
5
6
7
8
9
10

NL.2: State intent in comments

35

F.1: “Package” meaningful operations as carefully named functions
F.2: A function should perform a single logical operation

F.3: Keep functions short and simple

void read_and_print() // bad
{
 int x;
 cin >> x;
 // check for errors
 cout << x << "\n";
}

1
2
3
4
5
6
7

“ Almost everything is wrong with read_and_print. It reads, it
writes (to a fixed ostream), it writes error messages (to a fixed

ostream), it handles only ints. There is nothing to reuse, logically
separate operations are intermingled and local variables are in

scope after the end of their logical use.
36

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f1-package-meaningful-operations-as-carefully-named-functions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-single

F.1: “Package” meaningful operations as carefully named functions
F.2: A function should perform a single logical operation

F.3: Keep functions short and simple

int read(istream& is) // better
{
 int x;
 is >> x;
 // check for errors
 return x;
}

void print(ostream& os, int x)
{
 os << x << "\n";
}

1
2
3
4
5
6
7
8
9
10
11
12

void read_and_print()
{
 auto x = read(cin);
 print(cout, x);
}

1
2
3
4
5

37

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f1-package-meaningful-operations-as-carefully-named-functions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-single

F.1: “Package” meaningful operations as carefully named functions
F.2: A function should perform a single logical operation

F.3: Keep functions short and simple

Separation of concerns
for Project 0?

38

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f1-package-meaningful-operations-as-carefully-named-functions
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f2-a-function-should-perform-a-single-logical-operation
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-single

Constants and immutability

Con.1: By default, make objects immutable

Con.2: By default, make member functions const

Con.3: By default, pass pointers and references to consts

Con.4: Use const to define objects with values that do not change after construction

Con.5: Use constexpr for values that can be computed at compile time

Fun fact: I didn't realize this section existed
when I wrote last week's lectures.

Nuff said. 39

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#con-constants-and-immutability
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-immutable
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-fct
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-ref
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rconst-constexpr

F.16: For “in” parameters, pass cheaply-copied types by value
and others by reference to const

F.17: For “in-out” parameters, pass by reference to non-const

int func(const vector<int>& a1, vector<int>& a2){
 ... // Will a2 be modified?
}

1
2
3

class ReallyBigData;

void doStuff(ReallyBigData d){
 d.tryComputations();
}

1
2
3
4
5

class ReallyBigData;

void doStuff(ReallyBigData& d){
 d.tryComputation();
}

1
2
3
4
5

class ReallyBigData;

void doStuff(const ReallyBigData& d){
 d.tryComputation();
}

1
2
3
4
5

40

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f16-for-in-parameters-pass-cheaply-copied-types-by-value-and-others-by-reference-to-const
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f17-for-in-out-parameters-pass-by-reference-to-non-const

F.20: For “out” output values, prefer
return values to output parameters

F.21: To return multiple “out” values,
prefer returning a struct or tuple

Hint: if you don't feel like writing a custom class, look in <utility> and <tuple>

#include<utility>

void f(int x, int* p1, int* p2){
 *p1 = x;
 *p2 = x;
 return;
}

auto f(int x) -> std::pair<int,int> {
 return std::make_pair(x,x);
}

1
2
3
4
5
6
7
8
9

10
11

41

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f20-for-out-output-values-prefer-return-values-to-output-parameters
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f21-to-return-multiple-out-values-prefer-returning-a-struct-or-tuple

Myths
NR.1: Don’t: All declarations should be at the top of a function

NR.2: Don’t: Have only a single return-statement in a function

Space between declarations and usage is
space for bugs to creep in!

In some case, this is good design.

In some cases, this is anti-design.

42

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rnr-top
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rnr-single-return

Summary

43

Inheritance in C++

A little bit different from inheritance in Java.

By default, polymorphism is compile-time/early-binding.

To get Java-style runtime polymorphism (a.k.a.
late-binding), we need two things to be true:

The class is accessed through a reference or a pointer
The method is declared virtual

44

Other OOP-y things in C++
Can require that method overrides

some parent method via `override`
keyword

class PureVirtual {
 virtual void virtMethod() = 0;
};

1
2
3

Use =0 to create a pure virtual method,
a method with no implementation.

final keyword prevents further subtyping

C++ classes can inherit from multiple
classes (but take OOP before you do this)

protected members are available to
subclasses, but not publicly

Can use non-public
inheritance to do weird
stuff that you probably
don't really want to do.

class A {
 ...
};

class B : private A {
 ...
};

1
2
3
4
5
6
7

45

Code Style
Don't write comments that repeat your code!!

Structure your functions carefully.

Prefer to pass in large values by reference or const reference

Prefer to return multiple values by class/tuple/pair. A function that
both returns a value and alters its arguments is usually bad design

(unless the return value is an exit code, e.g. in C-style functions)

Const as much as possible.

Don't fall for old myths.

46

Project 1
Due next week at the start of lecture.

Make sure your definitions and declarations are
separated. No implementation in header files!

47

Notecards

Name and EID
One thing you learned today (can be "nothing")
One question you have about the material. If you
leave this blank, you will be docked points.

If you do not want your question to be put on Piazza,
please write the letters NPZ and circle them.

48

