CS 105C: Lecture 5

Lots of OOP

e Inheritance

e Virtual Methods

e Pure Virtual (abstract)
e final

e override

e Multiple Inheritance

e protected

e non-public inheritance

Q: Is there anything that we might think of as good style in
other languages that might be bad style in C++?

A: Wow. That's a great question! Nothing | can think of off the top of my head--if
something exists, it's probably tied to a language feature that works differently.

Q: Can we use the Google C++ Style Guide?

A: Yes! Note that some parts of that style guide are still taste and judgement, e.g:

11 |n your implementation you should have comments in tricky, non-obvious, interesting,
or important parts of your code.

Q: Are doxygen comments okay? Are they common?

A: | will never say "no" to good documentation. Sadly, doxygen-style
comments are not as common as they should be.

Q: How do Ml/Interfaces work in C++?

...well, y'all did ask.

Q: How do Ml/Interfaces work in C++?

class Animal{
virtual void makeNoise() const{
cout << "I am an animal" << endl;
}i

virtual void move() = 0;

}i

class Arachnid : public Animal {
virtual void spinWeb() = 0;

}

class FlyingSpider : public Arachnid {
void spinWeb() override { /* implementation */ }
void move() override { /* implementation */ }

}

int main(){
// btw, never do this in real code
Animal& a = *new FlyingSpider();
a.move(); // Calls FlyingSpider: :move()

1 mi.cpp: In function ‘int main()’:

2 mi.cpp:50:31: error: ‘Animal’ is an ambiguous base of

3 Animal* a = new FlyingSpider();

0O Jo 0 WD B

e el e el el
SO U W N EFE OV

17
18
19
20

class Animal({
virtual void makeNoise() const{
cout << "I am an animal" << endl;

}i
virtual void move() = 0;

}i

class Flying : public Animal {
virtual void fly() = 0;

}i

class Arachnid : public Animal {
virtual void spinWeb() = 0;

}

class FlyingSpider : public Arachnid, public Flying {
void fly() override { /* implementation */ }
void spinWeb() override { /* implementation */ }
void move() override { /* implementation */ }

}

‘FlyingSpider’

int main(){
Animal& a
a.move();

*new FlyingSpider();

What we wanted

1 class Animal{

2 virtual void makeNoise() const{

3 cout << "I am an animal" << endl;
4 }i

5 virtual void move() = 0;

6 }i

__d

class Arachnid : public Animal { 1 class Flying : public Animal {
virtual void spinWeb() = 0; 2 virtual void fly() = 0;
void move() override { /**/ } 3 void move() override { /**/ }
4

}i

\ /

class FlyingSpider : public Arachnid, public Flying {
void fly() override { /* implementation */ }
void spinWeb() override { /* implementation */ }
void move() override { /* implementation */ }

}

}

O Wb

Arachnid::Animal

class Animal{

}i

class Arachnid
virtual void spinWeb() = 0;
void move() override { /**/ }

}

virtual void makeNoise() const{
cout << "I am an animal" << endl;

}i

virtual void move()

public Animal {

What we got

Flying::Animal

1 class Animal({
2 virtual void makeNoise() const{
3 cout << "I am an animal" << endl;
4 }i
0 5 virtual void move() = 0;
' 6 };
1 class Flying : public Animal {
2 virtual void fly() = 0;
3 void move() override { /**/ }
4 };

class FlyingSpider : public Arachnid, public Flying {

}

void fly() override { /* implementation */ }
void spinWeb() override { /* implementation */ }
void move() override { /* implementation */ }

Possible Fixes

int main(){
// Yuck
Animal& a = *dynamic cast<Arachnid*>(new FlyingSpider());
a.move();

}

class Flying : virtual public Animal {
virtual void fly() = 0;
void move() override { /**/ }

}:

Other Problems

struct Animateable {
int id; int id;

struct BoardPiece {

void move() = 0; void move() = 0;

}: }

class AnimateableBoardPiece : public Animateable, public
void move(); // Aw heck, which one does this override?

}

int main(){
AnimateableBoardPiece b;
//...ewwww
b.Animateable::id = 3;
b.BoardPiece::id

I
1SN
~e

BoardPiece {

10

That was for 4 classes. Here's a collaboration diagram for a
simple LLVM error type. What should be virtual? How do you
handle name collisions?

ParentErT

T

llvm::Errorlnfos ThisErr
T, ParentEnT =

llvm::ErrorlnfoBase

< StringError :-/

llvm::Errorinfos StringError » char

A

< POBError, StringError = < 1D
’ ’ I

— |

[vm::StringError I

Ilvm::Errorlnfo< PDEError,
StringError =

N

[lvm::pdb::PDEError

11

CS 105C:; Lecture 5

The Stack, the Heap, and RAII

Back in Lecture 2

1 int x = 10;
2 size t sz X
3 1int* addr x

sizeof (x);
&X

0 2 2 6 3 10 12 14 16

Why these addresses?
Where would things actually go?

13

Memory Locations in C++

There are three primary memory locations in C++:

e Stack
e Heap
e .data/.bss (Global)

We will discuss the stack and heap.

14

The Stack: Fast C++ Memory

Most of the time, C++ will place
your variables on the stack

high address
That's here > T
| bep |

stuff...

low address

The stack is made of stack frames

1. Variables declared in a function live in that fn's stack frame

2. New variables are added at the end of the stack frame

3. New stack frame created during function call

4. Stack frame is destroyed when function returns
el | NStruction Pointer Start of stack frame End of stack frame

int £(){
int x
int y
return 3

1;
2;

}

sl 7 int main(){
int x = 2;
int y = £();
int z = x + y;

return 0;

17

int f£(){

int x = 1;
int y = 2;
return 3;

}

sl 7 int main(){

int x = 2;
int y = £();
int z = x + y;
return 0;

}

=l |NStruction Pointer Start of stack frame End of stack frame

18

int f£(){
int x = 1;
int y = 2;
return 3;

}

int main(){

q int x = 2;
int y = £();
int z = x + y;

return 0;

=l |NStruction Pointer Start of stack frame End of stack frame

19

1 int £(){

2 int x = 1;

3 int y = 2;

4 return 3;

5 }

6

7 int main(){
q&3 int x = 2;

9 int y = £();

10 int z = x + y;

11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

20

1 int £(){

2 int x = 1;

3 int y = 2;

4 return 3;

5 }

6

7 int main(){

8 int x = 2;
q9 int y = £();

10 int z = x + y;

11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

21

1
int y = 2 eoocoo0

return 3;

int main(){
int x 28
9 int y = f(
10 int z = X
11 return 0;

) ;
+ Yy

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

22

1 int £(){
---'»2 int x = 1;

3 int y = 2; eo0o0o0o0

4 return 3;

5 }

6

7 int main(){

8 int x = 2;

9 int y = £();
10 int z = x + y;
11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

23

1 int £(){
---'»2 int x = 1;

3 int y = 2; eo0o0o0o0

4 return 3;

5 }

6

7 int main(){

8 int x = 2;

9 int y = £();
10 int z = x + y;
11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

24

1 int f£(){

2 int x = 1;
q3 inty=2; o000 0

4 return 3;

5 }

6

7 int main(){

8 int x = 2;

9 int y = £();
10 int z = x + y;
11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

25

1 int f£(){

2 int x = 1; X
qB inty=2; o000 0

4 return 3; X

5 }

6

7 int main(){ y

8 int x = 2;

9 int y = £();

10 int z = x + y;

11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

26

1 1nt f£(){

2 int x = 1; X

3 int y = 2; eo0o0o0o0
— / return 3; X

5 }

6

7 int main(){ y

8 int x = 2;

9 int y = £();

10 int z = x + y;

11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

27

1 int f£(){

2 int x = 1; X

3 int y = 2;

4 return 3;

5 }

6

7 int main(){

8 int x = 2;
I---'>9 int y = £();

10 int z = x + y;

11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

28

1 int £(){

2 int x = 1;

3 int y = 2;

4 return 3;

5 }

6

7 int main(){

8 int x = 2;
q9 int y = £();

10 int z = x + y;

11 return 0;

12 }

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

29

int f£(){

int x = 1;
int y = 2;
return 3;

int main(){

int x 28
9 int y = f(
10 int z = X
11 return 0;
12 }

) ;
+ Yy

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

30

int f£(){

int x = 1;
int y = 2;
return 3;

int main(){

int x 28
9 int y = f(
10 int z = X
11 return 0;
12 }

) ;
+ Yy

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

31

int f£(){

int x = 1;
int y = 2;
return 3;

int main(){

int x 28
9 int y = f(
10 int z = X
11 return 0;
12 }

) ;
+ Yy

=l |NStruction Pointer o o oo o Start of stack frame End of stack frame

32

int f£(){
int x = 1;
int y = 2;
return 3;

}

int main(){
int x = 2;
int y = f(
int z = x
return 0;

) ;
+ Y

=l |NStruction Pointer Start of stack frame End of stack frame

33

0O J O UL b WD K-

NNMNNMNNRRRRRRRRRR&
WNRFROWVWWOWIOU D WNRE OV

// sizeof int = 4
// sizeof char =1
char g(){
char a = 25;
char b = 10;
return a + b;
}
int £(){ Draw the stack at the end of
int x = 1; . .
char q = q(); each function call (right before
int y = 2; that function's stack frame is
, return 3; destroyed)
int main(){

int x = 2;
int y = £();
int z = x + y;

char AUGH = g();

return 0;

34

Advantages of Stack

e |Lightning-fast to create/destroy variables
e Memory is automatically deallocated

e Fast to access variables
e Space-efficient

35

Problems with Stack

Can't return local memory (would be UB!)

void readLongInput(){
int A BAJILLION = 10000000000;
int input[A BAJILLION];
read(input, A BAJILLION);
// Now how do I return this data?

36

Problems with Stack

Can't free memory before stack frame is
destroyed.

\\Ifwe know that this cell is never going to
be used again, can we delete it and
allocate a green stack frame variable here?

37

The Heap: Long-Lived Memory

To solve the problems with the stack, C++ gives the
programmer a heap for long-lived data.

This heap is managed by the programmer (as
opposed to the stack, which is automatically
managed).

high address

That's here > heap

low address

To request data from the heap, we use the keyword new. This

gives us a pointer into the heap.

class Dog;

int main(){
Dog* myDog = new Dog();

delete myDog;

}

myDog

There is also a keyword newf(] for arrays.

40

Data from the heap is not freed automatically! To free data in the

heap, use the delete keyword.

class Dog;

int main(){
Dog* myDog = new Dog();

delete myDog;

}

There is also a keyword delete[] for arrays.

41

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
int* z = new int[3];
int g = p[2] + p[3];
return q;

}

int main(){
int* p = new int[5];
int q = func(p);
delete p;

}

[T T T T TTTTTITTTTTITTITTT]

42

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
int* z = new int[3];

int g = p[2] + p[3];
return q;

}

int main(){

q int* p = new int[5];

int q = func(p);
delete p;
}

[T T T T TTTTTITTTTTITTITTT]

43

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
int* z = new int[3];
int g = p[2] + p[3];
return q;

}

int main(){
q int* p = new int[5];
int q = func(p);
delete p;
}

B [T TTTTTTTTTTITTT]

44

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
int* z = new int[3]; P
int g = p[2] + p[3];
return q;

}

int main(){
q int* p = new int[5];
int q = func(p);
delete p;
}

B [T TTTTTTTTTTITTT]

45

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
int* z = new int[3]; P
int g = p[2] + p[3];
return q;

}

int main(){
int* p = new int[5];

q int q = func(p);

delete p;
}

B [T TTTTTTTTTTITTT]

46

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
—} int* z = new int[3]; P
int g = p[2] + p[3];
return q;

}

int main(){
int* p = new int[5];
int q = func(p);
delete p;

}

B [T TTTTTTTTTTITTT]

47

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
—} int* z = new int[3]; P
int g = p[2] + p[3];
return q;

}

int main(){
int* p = new int[5];
int q = func(p);
delete p;

}

B [T TTTTTTTTTTITTT]

48

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
—} int* z = new int[3]; P
int g = p[2] + p[3];
return q;

}

int main(){
int* p = new int[5];
int q = func(p);
delete p;

}

BN T T TTTTTTTTTT]

49

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){

—} int* z = new int[3]; P
int g = p[2] + p[3];
return q; Z
}

int main(){
int* p = new int[5];
int q = func(p);
delete p;

}

BN T T TTTTTTTTTT]

50

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){

int* z = new int[3]; P
—l- int q = p[2] + p[3];
return qg; Z
}

int main(){
int* p = new int[5];
int q = func(p);
delete p;

}

BN T T TTTTTTTTTT]

51

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){

int* z = new int[3]; P
—l int g = p[2] + p[3];
return qg; Z
}
q

int main(){
int* p = new int[5];
int q = func(p);
delete p;

}

BN T T TTTTTTTTTT]

52

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){

int* z = new int[3]; P
int g = p[2] + p[3];
—} return qg; Z
}
q

int main(){
int* p = new int[5];
int q = func(p);
delete p;

}

BN T T TTTTTTTTTT]

53

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){
int* z = new int[3]; P
int g = p[2] + p[3];
return q;

}

int main(){
int* p = new int[5];

q int g = func(p);

delete p;
}

BN T T TTTTTTTTTT]

54

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){

int* z = new int[3]; P

int g = p[2] + p[3];

return q; q
}

int main(){
int* p = new int[5];

q int q = func(p);

delete p;
}

BN T T TTTTTTTTTT]

55

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){

int* z = new int[3]; P

int g = p[2] + p[3];

return q; q
}

int main(){
int* p = new int[5];
int q = func(p);

q delete p;
}

BN T T TTTTTTTTTT]

56

=l |NStruction Pointer Start of stack frame End of stack frame

void func(int* p){

int* z = new int[3]; P

int g = p[2] + p[3];

return q; q
}

int main(){
int* p = new int[5];
int q = func(p);
delete p;

q }

[T T TN TTTTTTTTTTTT]

57

new and delete are the source of many, many, many, many bugs!

It is undefined behavior to:

delete the same memory twice

delete a pointer which was not allocated by new

use a pointer after it has been deleted

call delete[] on memory allocated by new

call delete on memory allocated by newl[]

e call free() on a pointer given by new

e call delete or delete[] on a pointer created by
malloc()/calloc()/realloc()

e call delete on a pointer-to-derived class which is
declared as a base-type pointer when the class does
not have a virtual destructor

e ...probably alot more.

...but we also don't want to leak memory! 58

Advantages of Heap

e Very Large Memory space
e Can allocate/deallocate memory as
needed.

59

Disadvantages of Heap

e Allocation can be slow
e Manual memory management is
difficult.

1 // sizeof int = 4

2

3 int f(int n){

00 J O U1 b

9 }

int X = new int[n];

for(int 1 = 0; i1 < n;
x[1] = i;

}

return Xx;

11 int main(){

12
13
14
15
16
17 }

int n = 10;

int* arr = f(n);
int sum = sum(arr);
delete[] arr;
return 0;

i++){

Draw out memory usage
pattern in this code.

61

Memory Safety

Case Study!

class Data;
void mainLoop(){
Data* data = new Data();
while(true){
readInput(d);
process(d);
writeOutput(d);
delete data;
resetState();
data = new Data();

This function can crash! process() can
throw an unhandled exception.

63

Case Study!

class Data;
void mainLoop(){

while(true){

try{
Data* data = new Data();

readInput(d);
process(d);

writeOutput(d);
delete data;
resetState();
}
except (Exception& e){
std::cerr << "Encountered exception:

std::cerr << "Continuing execution..."

}
}
}

||<< e << |\n|;
<< std::endl;

Is this function safe and leak-free?

Nope.

If process() throws, execution

is restarted at the top of the

while loop, and data is never
freed!

64

Case Study!

class Data;
void mainLoop(){
Data* data = new Data();
while(true){
try{
readInput(d);

process (d); If resetState() throws, data will
writeOutput(d); .
delete data; be double-freed, which leads

resetState(); (tO U B

data = new Data();

}

except (Exception& e){
std::cerr << "Encountered exception: "<< e << '\n';
std::cerr << "Continuing execution..." << std::endl;
delete data;

}
}
}

Is this function safe and leak-free?

Nope! o

Case Study!

class Data;
void mainLoop () {
Data* data = new Data();
while(true){
try{
readInput(d);
process(d);
writeOutput(d);
delete data;
data = nullptr;

resetState();(
data = new Data();

}

except (Exception& e){
std::cerr << "Encountered exception: "<< e << '\n';

std::cerr << "Continuing execution..." << std::endl;
if(data != nullptr){

delete data;
}

}
}
}

Is this function safe and leak-free?

N OPE

If resetState() throws, readlnput
will be given a null pointer!

66

Cleaning up correctly is HARD!

...we didn't even touch conditionals or multithreading!

Other Similar Problems

It turns out there are many problems which look similar to the memory problem:
resource must be allocated at start of operation and freed at the end.

e Memory Allocation

e File Open/Close

e Database Operations
e Lock acquisition

e Shared Pointers

What we would really like is a way for the resource to
be freed automatically.

What gets freed automatically?

Stack variables!

69

RAII

RAII

"Resource Acquisition is Initialization"

Another terribly-named C++ concept: the acronym CADRe
(Constructor Acquires, Destructor Releases) is much simpler to
understand, but RAIl is the standard term in C++.

RAIl makes a class responsible for holding onto
a resource (memorvy, files, locks, etc):

« When the class is created, the resource is
acquired.

« When the class is destroyed, the resource is
released.

71

For the next set of slides, pretend we
don't have access to the standard C++
container classes (vector, string, etc).

72

Simple Problem: Arrays

int main(){
while(true){
int* data = readArray(10);
process(data);
delete data;

}
}

int* readArray(int n){
int* data = new int[n];
for(auto& elem : data){ //nocompile
std::cin >> elem;
}

return data;

}

This suffers the same issue we saw earlier:

process can crash, but if we catch
exceptions, data might leak.

73

13
14
15

struct MyArray{ 1 int main(){
int numel; 2 while(true){
int* data; 3 try{
4 MyArray array = readArray(10);
MyArray(int size); 5 process(array);
~MyArray () ; 6 }
} Cﬁﬁ& 7 except (Exception& e){
N2y 8 std::cout << "Herpa derp!" << std::endl;
MyArray: :MyArray(int size) : numel(size){ 9 }
data = new int[numel]; 10 }
} 11 }
12
MyArray::~MyArray() { 13 int* readArray(int n){
delete[] data; // Have to use delete[] 14 MyArray arr(n);
} 15 for(auto& elem : arr){ //nocompile
16 std::cin >> elem;
17 }
18 return arr;
19 }

What data structure have we created?

74

RAIl 2: Files

Files need to be opened, written to, and closed.

Failing to close files is a bad thing: the contents we've written
so far might not be correctly flushed.

Closing the same file twice is not as bad--we might get an
annoying error, but no data is lost.

75

<N o0k W

int main(){
std::string filename;
std::cin >> filename;
FILE* file = fopen(filename.c str(),
write data(file);
close(file);

w')

14

76

0O JOo O WDN -

X©)

10
11
12
13
14
15
16

class File{
FILE* fp;

public:

File(std::string filename);
~File();

void write(Data data);

}i

File::File(std::string fn){
fp = fopen(fn.c _str(),"w");
}

File::~File(){
fclose(fp);
}

int main(){
std::string filename;
cin >> filename;
File file(filename);
write data(file);

o Ul WD BK

77

RAII 3: Locks

Locks are used to control exclusive access to data in multithreaded programs.

When a lock is acquired, no other thread can acquire that lock (the program is in an
exclusive state). Once the lock is released, other threads can acquire the lock.

Failing to acquire the lock before writing will result in data corruption.
Failing to release the lock after writing will result in a deadlocked program.

78

BAD

int shared data = 0;

void modify shared data() {
shared data = compute values();

}

int main(){
// Spawn 16 threads
spawn_ threads(modify shared data,16);

}

Has race conditions, undefined behavior

79

Still bad

int shared data = 0;
Lock 1lock;

void modify shared data(){
lock.acquire();
// now only I can access shared data
shared data = compute values();
lock.release();
// now someone else can acquire lock

}

int main(){
// Spawn 16 threads
spawn threads(modify shared data,16);

}

If a thread crashes in compute_values(),
the lock will not be released --> deadlock!

80

Still bad

int shared data = 0;
Lock lock;

void modify shared data(){
lock.acquire();
try{
shared data = compute values();
} catch(Exception& e){
lock.release();

}

lock.release();

}

int main(){
// Spawn 16 threads
spawn_ threads(modify shared data,16);

}

This works if compute_values crashes with an exception. What if it just
called exit() instead, or crashed when dereferencing a null pointer?

81

Good!

int shared data = 0;
std::1lock 1;

class unique lock{
std::lock& lock;

public:
unique lock(std::lock& 1);
~unique lock();

}i

void modify shared data() {
unique lock lock(1l);
shared data = compute values();

}

unique lock::unique lock(std::lock& 1)
: lock(1l) {
lock.acquire();

}

int main(){
// Spawn 16 threads
spawn threads(modify shared data,16);

}

unique lock::~unique_ lock(){
lock.release();

}

As long as compute_values fails in a way that performs stack
unwinding (e.g. exceptions, calling exit(), calling terminate()), the lock
will be released.

82

The class holds the resource

class File{ class unique lock{
FILE* fp; std::lock& lock;
public:
public: unique lock(std::lock& 1);
File(std::string filename); ~unique lock();
~File(); }i
void write(Data data);
}s ey Unique_lock::unique_lock(std::lock& 1) : lock(l) {
lock.acquire();
— File::File(std::string £fn) { }
fp = fopen(fn.c str(),"w");
} - unique lock::~unique lock(){ lock.release(); }
File::~Fil
— lf:lose?fgg 2{ struct MyArray{

int numel;
int* data;

}

MyArray(int size);
~MyArray();
}
Constructor Acquires

_»MyArray::MyArray(int size) : numel(size){ data = new int[numel]; }
Destructor Releases p llyArray::-MyArray() { delete[] data;)

83

RAII: Not just for exceptions

Maybe you just have a lot of really complex code.

lock.acquire();
while(true)/{
if(a || b && c¢){

}
else if(a && !b && c){

}

else if (b || !'b && c){
continue;

}

else{
return;

}
}

// Where to put calls to release()?

while(true){

}

// Automagically unlocks when we
// exit the loop for *any* reason!
std::unique lock 1lck(1l);

if(a || b && c){

}
else if(a && !b && c){

}

else if (b || !b && c){
continue;

}

else{
return;

}

84

What uses RAIl in C++?

...pretty much everything.

std.:
std.:
std:
std:

std::
std::
std:
std:
std::
std:

RAIl users in STL

:array
:vector
:thread
string

mutex
unique_lock
:shared_lock
:scoped_lock
lock_guard
:atomic

e std::ofstream
e std::ostream
e std::ifstream

e std::unique_ptr
e std::shared_ptr
e SO many others!

86

Take advantage of RAII!

Because manually matching open() and close() statements
yourself is really, really hard...

e Use RAIl classes from standard library
e |f not available, ask yourself if resource can be tied to
an object's lifetime.

= |f yes, write your own RAIl class for it. It's pretty
simple!

87

Summary

Stack Memory

A automatically-managed, fast, small
memory store used for local variables.

Fast variable access via stack pointers.

Variables created on declaration and
destroyed once scope ends.

Cannot reclaim memory before
destruction of stack frame.

89

Heap Memory

A large, slow store of memory used for long-lived and large data.

Request allocation with new or newf(], free memory with delete or delete[]

A common cause of UB errors.

90

It's hard to make sure things are
freed correctly!

class Data;
void mainLoop () {
Data* data = new Data();
while(true){
try{
readInput(d);
process(d);
writeOutput(d);
delete data;
data = nullptr;
resetState();
data = new Data();
}
except (Exception& e){
std::cerr << "Encountered exception: "<< e << '\n';

std::cerr << "Continuing execution..." << std::endl;
if(data != nullptr){

delete data;
}

}
}
}

91

RAII: Stack-based lifetimes

1At shared_data = Of Key idea: tie the lifetime of some external
' resource (heap memory, file handle, lock)
void modify shared data() { .
unique lock lock(1); to an object on the stack.
shared data = compute values();
}
int main(){ Once object goes out of scope, resource is

// Spawn 16 threads
spawn threads(modify shared data,16);

}

freed via the object destructor.

Abundant in the C++ Standard Library.

92

Quiz 2

Next week in class.

| will post on Piazza whether this will be a
paper or electronic quiz.

Topics:

Polymorphism and classes
Early vs late binding (compile-time/runtime polymorphism)
and when we expect to see each used in C++.

The existence of pure virtual methods and what they mean.

Style will not be tested on the quiz (but it will on your
projects!)

Stack + Heap allocation and how each works. Be able to
draw a stack/heap chart for executing programs like we did
today.

What RAIl is and how it's used to prevent resource leaks.

93

Project 2

Implement a simple programming language.
Program is stack based, but holds pointers into the heap.

Do not alter any existing headers! Grading code relies on the
given function signatures--changing them may result in
broken grading code and/or grumpy Kevin.

94

Project 2

Garbage collector: stop-the-world, semispace collector.
Very similar to the one used in Java (at least in spirit).

Do not underestimate the difficulty
of the garbage collector.

void VirtualMachine::gc() {

}

Valgrind and gdb are your friends in this assignment.

95

http://cs.ecs.baylor.edu/~donahoo/tools/valgrind/
http://www.cs.cmu.edu/~gilpin/tutorial/

Project 2

Experimental IDE that explains memory errors:
https://cde.stensal.com/signin

Download: Upload | Garbage Collector | > Build | default {' k-3

My Projects N
v

[}

wirlriririciricirE
Iz93szszT8

Stack.h

Discord Server

Signing in with an @utexas.edu account will give you extra
privileges that would not normally available

96

https://bit.ly/32fBxf1

Fill out a notecard with just your name/eid for full
participation points.

You can still ask questions if you have them.

97

