
CS 105C: Lecture 6

1

Last Time...

2

3

p

The Stack and Heap

What are the properties of these two
memory stores?

RAII
A technique for managing resource lifetimes (e.g. memory,

files, locks, objects) by tying the lifetime of the resource to the
lifetime of a stack-allocated class.

When the stack variable goes out of scope, its destructor is
called and the resource is released. Since stack variables go
out of scope eventually, the resource is eventually released.

4

Questions!

5

Q: When should we use malloc() vs new?

A: In C++, use new

6

Q: How does C++ know that a variable
has gone out of scope?

A: The compiler can read the source code and insert the
appropriate statements at end of scope.

7

CS 105C: Lecture 6

Templates

With much love to UW and UPenn for providing inspiration for this lecture 8

Why Templates?

void swap(int& x, int& y){
 int temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6

I want to swap two ints

9

Why Templates?

void swap(float& x, float& y){
 float temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6

I want to swap two ints floats

Question: do I need to rename swap to
something like swap_float?

10

Why Templates?

void swap(std::string& x, std::string& y){
 std::string temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6

I want to swap two ints floats strings

11

void swap(int& x, int& y){
 int temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6

void swap(float& x, float& y){
 float temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6

void swap(std::string& x, std::string& y){
 std::string temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6

Thanks to overloading, we don't have to
name our functions differently...

...but we still have to write the same code
over and over, which is A Bad Thing™

12

Solution: Parametric Polymorphism!

Polymorphism
In programming: the ability to present the same interface

for many different underlying datatypes (shapes).

We have already seen distinctions between types of polymorphism:

Compile-time polymorphism
Runtime polymorphism

13

Solution: Parametric Polymorphism!

Another distinction:

If the code does the same
thing for all underlying types,

it is known as
parametric polymorphism

If the code does different
things for different underlying

types, we call it
ad-hoc polymorphism

Which type is inheritance? 14

void swap(std::string& x, std::string& y){
 std::string temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6

C++ handles parametric
polymorphism using templates

template <class T>
void swap(T& x, T& y){
 T temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6
7

Code must do same thing
for all T, since there is no
mechanism to figure out

what T is
15

Using Templates

16

To indicate that the following C++ construct is
template code, use the following:

template <class T>

What follows this is
a template

Modern C++ uses `typename`,
which I will use for the rest of the
lectures, but be aware that lots

of old code uses the `class`
keyword here.

The name of the type
(can use whatever

name, but single caps
letter is traditional).

17

To indicate that the following C++ construct is
template code, use the following:

template <typename T>

The function/class that follows the template
prefix will resolve T to some type (e.g. int, char,

Ball).

18

template <class T>
void swap(T& x, T& y){
 T temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6
7

swap(int, int);
swap(char, char);
swap(arkanoid::Ball, arkanoid::Ball);
swap(int, long);
swap(std::string, std::string);
swap(float, double);

1
2
3
4
5
6

Which calls on the right are valid?

19

Now that we have declared template code, the compiler
can generate code to compute any calls to swap()

How and when does the compiler know to create template code?

20

template <class T>
void swap(T& x, T& y){
 T temp;
 temp = y;
 y = x;
 x = temp;
}

int main(){
 int x, y;
 Dog a, b;
 swap(x,y);
 swap(x,b);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

(1) Compiler reads template definition.

It now knows that swap() is a template, but
it does not generate any code yet!!

(2) Compiler sees usage of swap. It looks
up the template and creates an <int>
specialization or instantiation.

(3) Compiler sees usage of swap. It looks
up the template and fails to create an
instantiation. This causes an error on line
13.

The compiler doesn't generate code until it
sees the first usage of the template!

21

Template Instantiation

int add(int x, int y){
 return x + y;
}
int subtract(int x, int y){
 return x - y;
}

1
2
3
4
5
6

template <typename T>
T add(T x, T y){
 return x + y;
}
template <typename T>
T subtract(T x, T y){
 return x - y;
}

1
2
3
4
5
6
7
8

_Z3addii:
.LFB0:
 .cfi_startproc
 leal (%rdi,%rsi), %eax
 ret
 .cfi_endproc
.LFE0:
 .size _Z3addii, .-_Z3addii
 .p2align 4
 .globl _Z8subtractii
 .type _Z8subtractii, @function
_Z8subtractii:
.LFB1:
 .cfi_startproc
 movl %edi, %eax
 subl %esi, %eax
 ret
 .cfi_endproc

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

gcc -S

gcc -S

22

Using typical C++ code organization techniques with
templates will cause catastrophic failure

// File main.cpp
#include "swap.h"

int main(){
 int a = 3, b = 8;
 swap(a,b);
}

1
2
3
4
5
6
7

// File swap.h
template <typename T>
void swap(T& v1, T& v2);

1
2
3

// File swap.cpp
#include "swap.h"

template <typename T>
void swap(T& a, T& b){
 T temp;
 temp = a;
 a = b;
 b = temp;
}

1
2
3
4
5
6
7
8
9

10

23

First we compile main.cpp

// File main.cpp
#include "swap.h"

int main(){
 int a = 3, b = 8;
 swap(a,b);
}

1
2
3
4
5
6
7

// File swap.h
template <typename T>
void swap(T& v1, T& v2);

1
2
3

_start:
 blah blah blah

main:
 push 8
 push 3
 call swap

1
2
3
4
5
6
7

24

Next we compile swap.cpp

// File swap.h
template <typename T>
void swap(T& v1, T& v2);

1
2
3

// File swap.cpp
#include "swap.h"

template <typename T>
void swap(T& a, T& b){
 T temp;
 temp = a;
 a = b;
 b = temp;
}

1
2
3
4
5
6
7
8
9

10

No usage of template:
no instantiation!

25

Now we try to link these...

_start:
 blah blah blah

main:
 push 8
 push 3
 call swap

1
2
3
4
5
6
7

26

Solution?

There are several solutions. The easiest and most common is to
place template definitions in the header file.

This is the exact opposite of what we
normally do with header files!!

// File swap.h
template <typename T>
void swap(T& v1, T& v2){
 T temp;
 v1 = temp;
 ...
}

1
2
3
4
5
6
7

27

Templates for classes work pretty much the exact same
way for template functions:

template <typename T>
class Pair {
 public:
 T getFirst() const;
 void setFirst(T first);
 Pair();
 private:
 T m_first;
 T m_second;
}

1
2
3
4
5
6
7
8
9

10

Template Classes

28

If you choose to implement a method outside of the
declaration (which usually isn't done), you need to add

the template prefix and scope resolution operation:

// Broken
T Pair::getFirst() const{
 return this->m_first;
}

// Works
template <typename T>
T Pair<T>::getFirst() const{
 return this->m_first;
}

1
2
3
4
5
6
7
8
9

10

Caveat

29

Intermediate
Templates

30

Templates are written without any way to
control what types can be implemented

This sometimes leads to interesting

problems.

template <typename T, typename U>
??? add(T x, U y){
 return x + y;
}

1
2
3
4

What type should add return?
T = float, U = int?
T = int, U = float?

T = char, U = long?

31

template <typename T, typename U>
??? add(T x, U y){
 return x + y;
}

1
2
3
4

Note: once we know what T, U are, we can
decide! But not before then.

Solution: decltype

template <typename T, typename U>
decltype(x+y) add(T x, U y){
 return x + y;
}

1
2
3
4

Note: decltype is a function which returns types.

32

Other type-level programming

None of this will be tested, though
declval() will show up in project 3.

33

Other type-level programming

Sometimes, you want to use the reference of a type instead of the type, (e.g.
for late-binding polymorphism), but you only have access to the type.

int main(){
 /* Will use compile-time polymorphism
 because MySubClass returns a value */
 decltype(MySubClass().foo()) a1;

 /* Use declval to use late-binding */
 decltype(std::declval<NonDefault>().foo()) a1;
}

1
2
3
4
5
6
7
8

34

Other type-level programming

Sometimes, you want to use the reference of a type instead of the type, (e.g.
for late-binding polymorphism), but you only have access to the type.

int main(){
 /* Will use compile-time polymorphism
 because MySubClass returns a value */
 decltype(MySubClass().foo()) a1;

 /* Use declval to use late-binding */
 decltype(std::declval<NonDefault>().foo()) a1;
}

1
2
3
4
5
6
7
8

35

Other type-level programming
Templates can also take values!

template <unsigned int n>
struct factorial {
 int value = n * factoral<n-1>::value;
};

template <>
struct factorial<0> {
 int value = 1;
};

int main(){
 // Computed at compile-time!
 int factorial_25 = factorial<25>::value;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

36

Summary

37

Templates implement parametric
polymorphism in C++

The same code for all types.

template <class T>
void swap(T& x, T& y){
 T temp;
 temp = y;
 y = x;
 x = temp;
}

1
2
3
4
5
6
7

38

Templates need to be instantiated--for
this, the definition needs to be known

// File main.cpp
#include "swap.h"

int main(){
 int a = 3, b = 8;
 swap(a,b);
}

1
2
3
4
5
6
7

// File swap.h
template <typename T>
void swap(T& v1, T& v2);

1
2
3

// File swap.cpp
#include "swap.h"

template <typename T>
void swap(T& a, T& b){
 T temp;
 temp = a;
 a = b;
 b = temp;
}

1
2
3
4
5
6
7
8
9

10

This file structure will fail to compile, since
template definition is not known on line 6

of main()

39

Templates need to be instantiated--for
this, the definition needs to be known

Solution: template definitions go in the
header file!

This is exactly the opposite of how non-

template code should be structured!

40

decltype can be used to determine the
type of an expression

Useful when determining type is difficult
or impossible

template <typename T, typename U>
decltype(x+y) add(T x, U y){
 return x + y;
}

1
2
3
4

41

Feedback
Quiz Formats:

Out of class quizzes

I'd so love to do this, but I can't.

Paper quizzes

Formal vote on Piazza before next quiz

More frequent quizzes

Given our other constraints, this would
cut too much into lecture time...but
maybe.

42

Feedback
Quiz Formats:

Out of class quizzes

I'd so love to do this, but I can't.

Paper quizzes

Formal vote on Piazza before next quiz

More frequent quizzes

Given our other constraints, this would
cut too much into lecture time...but
maybe.

43

Feedback
Resources:

More office hours

Email me to schedule some. I'd like to have more regular
ones, but nobody shows up to the regular ones as it is,
which makes it hard to justify.

More lecture time/3 hour class

Leave that on the end-of-semester course eva--that can
be read by the department.

More outside resources (readings, links)

Now this I can easily do :) 44

External Resources

A blog post explaining a lot of C++
template stuff.

Good, solid explanations for these two
features which may prove helpful for
project 3
C++ Primer, 5e. Chapter 17, sections:

16.1.*
16.2.1, 16.2.2, 16.2.3
16.3

An Idiot's Guide to C++ Templates

Explaining Decltype and Declval

45

https://www.codeproject.com/Articles/257589/An-Idiots-Guide-to-Cplusplus-Templates-Part-1
https://arne-mertz.de/2017/01/decltype-declval/

Feedback
Lectures:

Slow down in lectures

I'm trying. Is there a feedback mechanism you can think of
to let me know if a lecture is going/went too fast?

Pair activities aren't helpful

Should we do solo activities? Better planned/more
advanced activities?

Other

If you don't see your feedback up here, there's a decent
chance I didn't understand it. Feel free to drop me a line! 46

Notecards

Name and EID
One thing you learned today (can be "nothing")
One question you have about the material. If you
leave this blank, you will be docked points.

If you do not want your question to be put on Piazza,
please write the letters NPZ and circle them.

47

