
CS 105C: Lecture 8

1



Last Time...

2



Iterators
A way to abstract out "go through every element in the collection."

Have different capabilities: reading, writing, and arithmetic

Can be thought of as a "superpowered pointer," implemented by a class

3



Consists of common functions

A first valid element

A current element

A first invalid element

A way to access the data
within the element

A way to get the next element

4
An associated data structure

begin()

(no special method)

end()

*   [dereference]

next() or ++



Lambda functions
Anonymous functions that can be declared locally. Have three parts:

[=](int x, int y) -> bool { return x <= y; }

The capture block Parameters and return type The function body

How can this compile?
 

With a lot of difficulty. But it turns out that
this pattern is unambiguous in C++.

5



Rules for reading <algorithm> documentation
Rule 1: You can pretend the ExecutionPolicy overloads don't exist
Rule 2: Look at the types and names in the simplest signature and think
about what they mean.
Rule 3: Any unpaired iterators (e.g. d_first, first2) are assumed to point to a
range large enough to be appropriate for the first range.
Rule 4: Unary lambdas take one operand, Binary lambdas take two.
Predicates return booleans, and Ops return anything.

6



Questions!

7



Q: What happens if you change the captured variable?

int main(){
   int x = 2;
   auto add_x = [ x](int z){return x + z;};
   x = 5;
   std::cout << add_x(3) << std::endl;
}

1
2
3
4
5
6

int main(){
   int x = 2;
   auto add_x = [&x](int z){return x + z;};
   x = 5;
   std::cout << add_x(3) << std::endl;
}

1
2
3
4
5
6

8



Q: How do I write a custom iterator for my class?

A1: For full details, see
https://users.cs.northwestern.edu/~riesbeck/programming/c++/

stl-iterator-define.html

A2: You need to write your own iterator class. It'll need to
implement at least the following custom ops:

*                  (dereference operator)
++                (increment operator)
== and !=    (equality test operators)

Ideally, you also modify your class to provide the begin()
and end() methods, which return iterators.

9

https://users.cs.northwestern.edu/~riesbeck/programming/c++/stl-iterator-define.html


CS 105C: Lecture 8

LVals and Rvals and move (oh my!)

10



Warning: This is the most advanced subject we've
encountered so far (possibly on-par with templates),

and dives deep into the innards of C++.
 

This presentation has been kept deliberately short:
ask lots of questions!

11



Copy Constructors

Copy Assignment
and

12



Copies

int x = 3;
int y = x;
 
y = 5;
 
std::cout << x << ", " << y << std::endl;

1
2
3
4
5
6

What does this print and why?

13



int main(){
  Dog thalia;
  Dog buck;
  
  Dog dog2 = thalia;
  buck = dog2;
  dog2.say_name();
}
 
class Dog {
   std::string name;
   
   Dog(const& Dog other){
     this->name = other.name;
   }
   
   Dog& operator=(const Dog& other){
     this->name = other.name;
     return *this;
   }
   
   void say_name(){
     std::cout << "Woof I am " << name << std::endl;
   }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Copy constructors and copy assignment operators let us customize the
behavior of assignment for our classes.

Calls custom copy ctor

Calls custom assignment

14



     for(size_t i = 0; i < other.size(); i++){
       data[i] = other[i];
     }

     for(size_t i = 0; i < other.size(); i++){
       data[i] = other[i];
     }

  b = a;   // How long does this take?

class IntVector {1
   int* data;2
   3
   IntVector(const IntVector& other){4

5
6
7

   }8
   9
   IntVector& operator=(const Dog& other){10

11
12
13

     return *this;14
   }15
};16
 17
int main(){18
  IntVector a = /* some initialization function */;19
  IntVector b;20

21
}22

Sometimes, copies are expensive!

15



Consider the following code:
class X{
  int* data;
 public:
  X(){ expensive_operation1(); }
  X& operator=(const X& other){ 
    expensive_copy_operations(other); 
  }
  ~X(){ expensive_operation2();}
};
 
X create_an_x(){
  X x;
  expensive_operation_3(x);
  return x;
}
 
int main(){
  X x;
  ...
  x = create_an_x();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

In the absence of compiler optimizations, how
many expensive operations are executed?

16



Consider the following code:
class X{
  int* data;
  X(){ expensive_operation1(); }
  X(const X& other){
     expensive_copy_operations();
  }
  X& operator=(const X& other){
     expensive_copy_operations();
  }
  ~X(){ expensive_operation2();}
};
 
X create_an_x(){
  X x;
  expensive_operation_3(x);
  return x;
}
 
int main(){
  X x;
  ...
  x = create_an_x();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1: Construction

2: Temp Obj
Construction

3: Copy assignment from temporary

4: Destruct the temporary 17



Consider the following code:
class X{
  int* data;
  X(){ expensive_operation1(); }
  X& operator=(const X& other){
     expensive_copy_operations();
  }
  ~X(){ expensive_operation2();}
};
 
X create_an_x(){
  X x;
  expensive_operation_3(x);
  return x;
}
 
int main(){
  X x;
  ...
  x = create_an_x();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

In this specific case, the compiler can take advantage of the
return value optimization to avoid making copies--but this isn't

always possible!

18



Assuming that construction, copy, and destruction are all expensive
operations, how many expensive operations are requested on line 18?

X create_an_x(int i){
  X x;
  expensive_operation_3(x, i);  // Assume no copy made here
  return x;
}
 
X process_x(X x_in){
  X x = x_in;
  expensive_operation_z(x); // Assume no copy made here
  return x;
}
 
int main(){
  X x;
  std::vector<X> xs;
  ...
  for(int i = 0; i < BIG_NUMBAH; i++){
    xs.push_back(process_x(create_an_x(i)));
  }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

19



Even worse: swapping!!
template <typename T>
T swap(T& a, T& b){
   T temp = b;
   b = a;
   a = temp;
}

1
2
3
4
5
6

If T is std::vector<int> and the two inputs are
each 100,000 elements large, we need to:

 

Copy 800kB of memory from b to temp
Copy 800kB of memory from a to b
Copy 800kB of memory from temp to a
Destroy temp

Optimal swap algorithm writes 24 bytes of memory!

Total amount of
memory written:

2.4 MB

20



What we'd really like to have:

class X{
  int* data;
  X(){ expensive_operation1(); }
  X& operator=(const X& other){
    // Yoink! Data is mine now!
    std::swap(other.data, this->data);
  }
  ~X(){ expensive_operation2();}
};
 
X create_an_x(){
  X x;
  expensive_operation_3(x);
  return x;
}
 
int main(){
  X x;
  ...
  x = create_an_x();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

We know that we aren't going
to use the RHS of this again!!

 
So just swap the data pointers

instead of mucking around
with copies!

Could we just...steal the data instead of
making an expensive copy?

21



Could we just...steal the data instead
of making an expensive copy?

class X{
  int* data;
  X(){ expensive_operation1(); }
  X& operator=(const X& other){
    // Yoink! Data is mine now!
    std::swap(other.data, this->data);
  }
  ~X(){ expensive_operation2();}
};
 
X create_an_x(){
  ...
}
 
int main(){
  X x, x2;
  ...
  x2 = create_an_x();
  x = x2;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

C++ rules say that x should be a copy of x2
here--swapping their data is going to be

very, very confusing!

Answer: nope.

22



Is it okay for us to steal the result of
create_an_x()?

 
What makes it different from stealing the

value of x2?

Wait a minute...

class X{
  int* data;
  X(){ expensive_operation1(); }
  X(const X& other){
    // Yoink! Data is mine now!
    std::swap(other.data, this->data);
  }
  ~X(){ expensive_operation2();}
};
 
X create_an_x(){
  ...
}
 
int main(){
  X x, x2;
  ...
  x2 = create_an_x();
  x = x2;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

23



LValues and RValues

24



In C++, some things can go on the left side,
and some things can go on the right side.

x = 5;  // Okay!
y = 5;  // Also okay!
5 = y;  // Not okay!
x*y = 5; // Also not okay!

1
2
3
4

Rough intuition: named locations in memory can be
treated as lvalues. Everything else is an rvalue.

 
RValues must go on the right hand side of an

assignment operation. Only lvalues can appear on the
left hand side of assignment. 25



References are restricted!

int& x = 5; // This is not legal!
 
/////////////////////////////////
int x = 5;
int& x2 = x;  // This is fine!

1
2
3
4
5

Why is the first line illegal?

26



In general, you may not take a non-const
reference to an rvalue, because there may

be no memory location to modify!

int& x = 3;
 
x++;  // What the heck does this modify? the literal value 3?
 
///////////////////////////////////
 
const int& x = 3;  // This is okay

1
2
3
4
5
6
7

Taking const references to rvalues is okay:
we can't modify them.

27



Can't take non-const reference to rvalue

int test_ref(const int& x){
  return x + 2;
}
 
int main(){
  int c = test_ref(3);
}

1
2
3
4
5
6
7

int test_ref(int& x){
  return x + 2;
}
 
int main(){
  int c = test_ref(3);
}

1
2
3
4
5
6
7

Compiles fine!
error: cannot bind non-const lvalue

reference of type 'int&' to an rvalue of
type 'int'

28



Introducing: RValue References!

int&& x = 5;1

We can now bind a reference to rvalues!

To avoid confusion, the old reference type
is now called an "lvalue reference".

int x = 3;     // Value
int&& x1 = 5;  // Rvalue reference
int&  x2 = x;  // Lvalue reference

1
2
3

29



Introducing: RValue References!

int&& x = 5;1

We can now bind a reference to rvalues!

To avoid confusion, the old reference type
is now called an "lvalue reference".

int x = 3;     // Value
int&& x1 = 5;  // Rvalue reference
int&  x2 = x;  // Lvalue reference

1
2
3

Note: Rvalue references will only bind to rvalues!!

30



Introducing: RValue References!

Can I
bind a...

...to a Lvalue
Reference

const Lvalue
Reference

Rvalue
Reference

Lvalue

Rvalue

int y;
int &x = y;

1
2

int y;
const int &x = y;

1
2

int y;
int &&x = y;

1
2

 
int &x = 5;

1
2

 
const int &x = 5;

1
2

 
int &&x = 5;

1
2

31



What can we do with rvalue references?

int main(){
  get_best_dog();
  ...
  ...
}

1
2
3
4
5

Temporary
destructed here

int main(){
  Dog&& dog = get_best_dog();
  ...
  ...
}

1
2
3
4
5

Temporary
destructed here

Binding an rvalue reference to a
temporary extends its lifetime

32



What can we do with rvalue references?

int&& x = 5;
x = x + 5;
std::cout << x; // Prints 10

1
2
3

Modify temporary values (don't worry, the
compiler makes a copy before you do this!)

33



What can we do with rvalue references?

void derp(const int& x){
  std::cout << "I have an lvalue!" << std::endl;
}
 
void derp(int&& x){
  std::cout << "I have an rvalue!" << std::endl;
}
 
int main(){
  int x = 5;
  derp(x);
  derp(5);
}

1
2
3
4
5
6
7
8
9

10
11
12
13

Overload functions! Rvalues can bind to both rvalue and const lvalue
references, but will preferentially select the rvalue overload if it exists.

34



And that's it!
That's pretty much everything we

can do with rvalue references.

35



RValue Reference Overloads
(i.e. "Move Semantics")

36



The big thing about rvalue references isn't how you use them
in code, it's for overloading functions.

 
Specifically, the constructor and assignment operator.

// Expensive to Copy!
struct ETC{
  int* data;
  int size;
  ETC();
  ETC(const ETC& other);
  ETC& operator=(const ETC& other);
  ETC(ETC&& other);
  ETC& operator=(ETC&& other);
};

1
2
3
4
5
6
7
8
9
10

Default Constructor

Copy Assignment Operator

Move Assignment Operator
Move Constructor

Copy Constructor

37



X create_an_x(){
  X x;
  expensive_operation_3(x);
  return x;
}
 
int main(){
  X x;
  X x2;
  ...
  x2 = create_an_x();
  x = x2;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

It is okay to steal
this object's data in
the assignment...

...but not this object's data.

...because this is an rvalue!

...because this is an lvalue!

38



  ETC(ETC&& other) noexcept : data{nullptr}, size{0} {
    std::swap(data, other.data);
    std::swap(size, other.size);
  }
  ETC& operator=(ETC&& other) noexcept {
    std::swap(data, other.data);
    std::swap(size, other.size);
  }

// Expensive to Copy!1
struct ETC{2
  int* data;3
  int size;4
  ETC() = something;5
  ETC(const ETC& other) = something;6
  ETC& operator=(const ETC& other) = something;7

8
9
10
11
12
13
14
15

};16

39



// Expensive to Copy!
struct ETC{
  int* data;
  int size;
  ETC();
  ETC(const ETC& other);
  ETC& operator=(const ETC& other);
  ETC(ETC&& other);
  ETC& operator=(ETC&& other);
};

1
2
3
4
5
6
7
8
9
10

ETC generate_ETC(){
  return ETC();
}
 
int main(){
  ETC a;
  ETC b = a;
  ETC c = generate_ETC();  
}

1
2
3
4
5
6
7
8
9

Line 6: Calls default constructor
Line 7: Calls copy constructor
Line 8: Calls move constructor

40



int main(){
  X x;
  std::vector<X> xs;
  ...
  for(int i = 0; i < BIG_NUMBAH; i++){
    xs.push_back(process_x(create_an_x(i)));
  }
}

1
2
3
4
5
6
7
8

Moves can be chained!

41



std::move
Like it's cousin remove_if, move is confusingly named

because it doesn't actually move anything!!

int main(){
  ETC a;
  ETC b = std::move(a);
}

1
2
3
4

std::move converts its argument into an
rvalue reference-to-object, allowing you to

use the move constructor.

After being moved-from, a is in an unknown state--it is the programmer's
responsibility not to rely on anything about the value of a.

42



Rule of Five
If your class implements a non-default version of any of the

following functions:

Destructor
Copy Constructor
Copy Assignment
Move Constructor
Move Assignment

 
then it almost certainly needs 

 
Another way of saying this is "if you define or =delete any

default operation, define or =delete all of them."

a custom version of all five of
them.

43

https://en.cppreference.com/w/cpp/language/rule_of_three


Some Confusing Points

44



lvalues and rvalues are a simplification!
The C++ standard actually defines five

distinct !value categories

prvalue
("pure rvalue")

xvalue
("expiring value")

rvalue
(what we've discussed in this lecture)

glvalue
("generalized lvalue")

lvalue
(a glvalue that is not

an xvalue)

You do not need to memorize this information! Just remember the
names in case you run across them in the future.

45

https://en.cppreference.com/w/cpp/language/value_category


struct Tester{
  Tester(){
    std::cout << "Default constructor called!\n";
  }
  Tester(const Tester& other){
    std::cout << "Copy constructor called!\n";
  }
  Tester(Tester&& other){
    std::cout << "Move constructor called!\n";
  }
};

1
2
3
4
5
6
7
8
9
10
11

Tester gen_tester() {
  return Tester();
}
 
int main(){
  Tester&& a = gen_tester();
  std::cout << "NEXT!" << std::endl;
  Tester b = a;
}

1
2
3
4
5
6
7
8
9

46



Rvalue references are lvalues!!

If you think about this carefully, it's actually not terribly surprising:

Rvalue references are a named memory location
We use rvalue capture to indicate that something is a temporary
that nobody else can access--if you bind an rvalue to an rvalue
reference, this is no longer true.

...but it will catch you off guard a few times.

47



Summary

48



Copying is expensive, stealing is cheap!

int main(){
  X x, x2;
  ...
  x2 = create_an_x();
  x = x2;
}

1
2
3
4
5
6

Wherever possible, we'd like to move data
around instead of making copies of it.

 
One problem: with the tools we've seen so
far, there is no good way to tell when it's

possible to move/steal data instead of
copying it.

We can move out of create_an_x()
but not out of x2. Why?

49



LValues and RValues allow us to distinguish between
temporary and named data

Rvalues are values that can only live on the right
hand side of an assignment operator--they have no

named location in memory.

C++ lets us overload functions on the value
category of the input with rvalue references,

which can only bind to rvalues

ETC(ETC&& other) noexcept : data{nullptr}, size{0} { 
  std::swap(data, other.data); 
  std::swap(size, other.size); 
}

50



Surprising Side Effect: Replacing a variable with an
expression of its value can now sometimes fail!

int main(){
  int x = 5;
  do_something(5); // Works!
  do_something(x); // Compiler Error!
}

1
2
3
4
5

51



RValue references are almost exclusively used to
implement move semantics

Since an rvalue can't be referred to again, we can just steal all of its data!

This is called move semantics and is
implemented by making a move constructor and

move assignment operator.

ETC(ETC&& other) noexcept : data{nullptr}, size{0} { 
  std::swap(data, other.data); 
  std::swap(size, other.size); 
}

52



Quiz Next Week!
Vote on Piazza if you want it to be on Canvas or on paper

Focus is mostly on iterators/STL, with a
lesser focus on templates

See the last slides in this presentation for a
list of what to study

53



Project 3
Infinite lazy streams

Have you ever wanted to build a list of all the prime numbers?
 

Well now you can!

54



Project 3
Infinite lazy streams

The most challenging project to date! Requires knowledge of:

Templates
Shared Pointers (next lecture)
Rvalue/Lvalue references
Perfect forwarding (next lecture)
Classes/Objects/Inheritance

 
And even then, strange bugs will pop up (e.g. segfaults due to

accidental infinite recursion)
 

Depending on your background, 1.5x to 4x harder than Project 2
55



Notecards

Name and EID
One thing you learned today (can be "nothing")
One question you have about the material. If you
leave this blank, you will be docked points.

If you do not want your question to be put on Piazza,
please write the letters NPZ and circle them.

56



Quiz 3

You should know:
What templates are
What parametric polymorphism is and how it differs
from ad-hoc polymorphism
The basics of template syntax
When template code is actually generated
Code layout rules  when using templates
Why iterators are needed
The interface of an iterator (i.e. what each member
does/is)
The iterator capability hierarchy
The special iterators insert and reverse, and what they
do
The names and parts of a C++ lambda
How captured variables are treated in a lambda
When it is legal to use variables in a lambda

You do not need to (know):
 

Mechanisms of template code generation
decltype/declval
How to use templates with anything but typename in the
template argument (i.e. template metaprograms)

You should be able to:

Write a simple template function
Understand how to implement a simple
iterator for a data structure
Read the function signature for a
function in <algorithm> and be able to
describe what it does.

57



Additional Resources

 

 
Eli Bendersky's 

 (more detail on rvalues/lvalues,
and not so much about move/forward)

A short guide on rvalue references,
move semantics, and forwarding

An extended guide on rvalue
references, their motivation, and the
forwarding problem

guide on rvalues and
lvalues

 

 

 

Another great short guide on rvalue
references and move semantics

Yet another short guide on move
semantics (this one linked from the ISO
CPP guide!)

Stack Overflow question on move
semantics

Universal references and how they
differ from rvalue references

58

https://www.artima.com/cppsource/rvalue.html
http://thbecker.net/articles/rvalue_references/section_01.html
https://eli.thegreenplace.net/2011/12/15/understanding-lvalues-and-rvalues-in-c-and-c/
https://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.html
https://www.internalpointers.com/post/c-rvalue-references-and-move-semantics-beginners
https://stackoverflow.com/questions/3106110/what-is-move-semantics
https://isocpp.org/blog/2012/11/universal-references-in-c11-scott-meyers

