
Dictionaries and Sets

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin

and pickles!

1

Converting Numbers to Words

"13177284" is pronounced "one three one seven seven
two eight four".

Write a program which accomplishes this conversion.

Small bite: convert a single int into its
written equivalent.

2

Converting Words to Numbers

"13177284" is pronounced "one three one seven seven
two eight four".

Write a program which, given the written-out form,
converts to the numeric string (not the number!).

? 3

Dictionaries

4

Dictionaries give us associative lookup

A collection of keys and values. Each key has a
unique value associated with it.

Given a key, you can quickly look up the value.

5

Constructing Dictionaries
Can use special syntax for it.

Or we can just add keys one at a time.

dict1 = dict()
dict1["hey"] = 3
dict1["help"] = 4
dict1["power"] = 5

1
2
3
4

6

def safe_lookup(d, key):
 if key in d:
 return d[key]
 else:
 print(f"Wuh woh! {key} was not in the dictionary!")
 return None

1
2
3
4
5
6

Accessing Dictionaries
doubles = { 2:4, 3:6, 4:8, 5:10 }
print(doubles[2])
print(doubles[3])
print(doubles[6])

1
2
3
4

We can use [] notation to look up elements. But be careful!
If the key isn't in the dictionary, we'll get a KeyError.

Can check if key is in dictionary ahead of time by using in or

not in.

7

Adding Elements
dictionary[key] = value

If key is not in the dictionary, adds the
key to dictionary with the new value.
If key is in the dictionary, modifies the
current value with the new one.

8

Deleting Elements
del dictionary[key]

If key is not in the dictionary, raises a KeyError

Can also use dictionary.pop(key) to get the value.

9

Iterating
for key in dictionary.keys():
 loop body

1
2

for value in dictionary.values():
 loop body

1
2

for (key, value) in dictionary.items():
 loop body

1
2

Equivalent to first form
for key in dictionary:
 loop body

1
2
3

10

Let's Write a Program

Write a program that counts how often each character
occurs in a string.

Sanity check afterwards to make sure that the total
number of counts is the same as the input length.

11

Sets

12

Sets in Python behave like mathematical sets:

Unordered
Elements can be different types
Every item is unique

s = set()
s.add(2)
s.add(3)
s.add(5)
s.add(2)

1
2
3
4
5

13

Set Methods
Method Description
add(x) Add a single element to the set

update(c) Add all elements from c into the set

remove(x) Remove x from set, raising KeyError if
not present

discard(x) Remove x from the set, no error raised

union(s2) Find the union of s1, s2

intersection(s2) Find the intersection of s1, s2

issuperset(s2) Is s1 a superset of s2?

issubset(s2) Is s1 a subset of s2?

14

Super Neat Trick
def num_unique_elem(collection):
 ???

1
2

def num_unique_elem(collection):
 return len(set(collection))

1
2

15

Pickling

16

Sometimes, we want to save data to a file.

Could figure out how to write data to a representation,
read it back.

For example 2D lists can often be written as a CSV.

Dictionaries can be written using JSON.

But what about frozenset? defaultdict?
custom data structures?

17

Python Pickles
Lets us save our data into files without worrying

about the format! As long as we can write data to a
file, we can get it back out later.

import pickle
To save an object
with open("object.pkl", "wb") as pklfile:
 pickle.dump(obj, pklfile)

To get an object back
with open("object.pkl", "rb") as pklfile:
 obj = pickle.load(pklfile)

1
2
3
4
5
6
7
8

18

Notes
Don't rely on pickle files long term! The internal

format can change, meaning e.g. if you save a file
with Python 3.8 and try to load with Python 3.11,

you might get an error.

Pickles are easy, but sometimes different formats
will be faster and better for specific data types (e.g.

dicts are almost always better serialized in JSON,
homogeneous lists of primitives are almost always

better serialized in CSV).

19

