
Functions

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin 1

Note: IPython

2

Sometimes, we want to do the same thing over and
over again, maybe with slight variations.

Functions allow us to do this. We have already used
several built-in functions in Python.

3

In addition, the python standard library comes with

Modules are Python code that contain related functions which

we can reuse. When you downloaded Python, you also
downloaded the standard modules (also referred to as the

"standard library").

Most of these modules are beyond the scope of this class.

We will use the math module, which contains many common
mathematical operations, and the random module, which

contains functions for generating random numbers.

lots of
other modules.

4

https://docs.python.org/3.10/tutorial/modules.html

To use functions which are part of a module, we call the function
with the name of the module, a period (pronounced "dot"), and the

name of the function.

and we have to import the module:

If you're writing a file, imports should go at the very
top of the file.

5

Lots of functions in math!

6

Random
There are several useful functions defined in random:

randint(a, b): generate a random integer in
randrange(a,b): generate a random integer in
random(): generate a float in the range

[a..b]
[a..b)

(0..1)

How should we simulate flipping a two-
sided coin?

7

Examples with random

8

How to Import
Typing the name of the module every time can be annoying.

Most IDEs have features to reduce the amount of typing

needed.

9

How to Import
We can also import specific functions from a module.

import everything
from random

Why not always import all? 10

Writing Functions

11

def compute_max_of(num1, num2, num3):
 if num1 > num2 and num1 > num3:
 return num1
 elif num2 > num1 and num2 > num3:
 return num2
 else:
 return num3

1
2
3
4
5
6
7

What happens when I call this?

x = compute_max_of(7, 10, 13)
print(x)

1
2

12

We've seen lots of system-defined functions. Now it's
time to define our own.

def function_name(list of parameters):
 body_statement_1
 body_statement_2
 ...

1
2
3
4

This defines a block of code that performs a specific
task. It can reference any variables in the list of

parameters. It may or may not return a value. These
are also called arguments.

13

14

15

Suppose you want to sum all the integers from 1 to n.

Returns the sum of values from 1 to n.
def sum_to_n(n):
 total = 0
 for i in range(1, n+1):
 total += i
 return total

1
2
3
4
5
6

Question: does this actually compute anything?

16

We still need to call the function! Otherwise, nothing
actually gets run. A function acts like a "recipe" to do

some computation, but writing the recipe down
doesn't cause a cake to be baked.

def main():
 print(sum_to_n(1))
 print(sum_to_n(1000))

1
2
3

Output:
1

500500

17

Observations
def sum_to_n(n):
 ...

Here, n is a formal parameter. It is used as a placeholder for an
actual parameter (e.g. 100, 1000) used in an actual call.

sum_to_int(n) returns an int value. This means that it can
be used anywhere an int could be used.

x = sum_to_n(30)
print(x)
print("Even" if sum_to_n(5) % 2 == 0 else "Odd")
for i in range(1, 30):
 print(i, sum_to_n(i))

1
2
3
4
5

18

Return
When a return statement is executed, you immediately

return to the calling environment.

If you call return with a value, the caller gets that value.
If you call return without a value, Python implicitly

returns None for you. Do this carefully.

Every function has an implicit return at the end.

def print_x(x):
 print(x)

x = 10
y = print_x(x)
print(y)

1
2
3
4
5
6 19

Function In/Out
An important note: when we've been writing

scripts so far, we've been using input() and print()
to communicate with the user.

In general, for functions, you want to get inputs
from arguments and pass outputs using return.

A common mistake:

def double_num(x):
 y = 2 * x
 print(y)

def main():
 x = int(input("Enter a number to double: "))
 y = double_num(x)
 print(f"Double of {x} is {y}")

1
2
3
4
5
6
7
8

20

The Power of
Abstraction

21

Once we've defined sum_to_n, we can use it without
worrying about the definition.

We need to know what it does, but we do not
care about how it does it.

This is called abstraction.

Used properly, it is incredibly,
unbelievably powerful.

22

Returns the sum of values from 1 to n.
def sum_to_n(n):
 total = 0
 for i in range(1, n+1):
 total += i
 return total

1
2
3
4
5
6

Returns the sum of values from 1 to n.
def sum_to_n(n):
 return (n + 1) * n // 2

1
2
3

One day, we realize we can program
sum_to_n much more efficiently using a

method discovered by Gauss:

def main():
 max_num = 1000000
 max_sum = sum_to_n(max_num)
 print(f"The sum of the first {max_num} numbers is {max_sum}")

1
2
3
4

We don't have to change any other code!! If we'd written
the code in-line, we'd have to find all other instances. 23

More Examples
and docstrings

24

Docstrings

def add_nums(a, b):
 """Adds a and b together"""
 return a + b

1
2
3

Python supports a special version of documentation for
a function called a docstring. It goes right below the

function definition at the same indentation as the body.

def dummy_func(a, b):
 """If we need them to, docstrings can even be multiline!

 a: an input
 b: an input
 returns: the sum of a and b
 """
 return a + b

1
2
3
4
5
6
7
8

25

Other Examples

def multiply_to_n(n):
 """Multiplies all values from 1 to n. This is
 also known as a factorial function"""
 result = 1
 for i in range(2, n+1):
 result *= result

1
2
3
4
5
6

This function...doesn't work.

26

Convert °C to °F, and °F to °C

def fahrenheit_to_celsius(degrees_f):
 return 5 / 9 * (degrees_f - 32)

def celsius_to_fahrenheit(degrees_c):
 return 9 / 5 * degrees_c + 32

1
2
3
4
5

27

Write a program which
prints a conversion table.

Convert °F in the range [-80, 130] every 10 °F.

28

Primes

29

Suppose you want to print out a table of
the first 100 primes, 10 per line

You could do this without functions,
but it would be a mess.

Much better idea: find and use
functional abstraction. Find

parts of the algorithm that can
be coded separately and
"packaged" as functions.

30

Here's some Python-like pseduocode to print 100 primes:

def print_100_primes():
 prime_count = 0
 num = 0
 while prime_count < 100:
 if (we already printed 10 on this line):
 go to a new line
 next_prime = (the next prime > num)
 print next_prime on the current line
 num = next_prime
 prime_count = 1

1
2
3
4
5
6
7
8
9

10

Note that most of this is straightforward python. The only
new part is how to find the next prime. Let's make that a

function.

31

Assuming we can get the next
prime, write a function to print the

first n primes, 10 per row.

32

Now that we have that, let's write a
function to get the next prime.

def get_next_prime(num):
 if num < 2:
 return 2
 else:
 guess = num + 1
 while (guess is not prime)
 guess += 1
 return guess

1
2
3
4
5
6
7
8

Pseudocode:

33

Now we just need to
figure out if a

number is prime.

34

Final Example

Let's say we just want to find and print primes, starting
from a given number.

k

35

Positional Arguments
 and kwargs

36

def some_function(x1, x2, x3, x4):
 ...

1
2

some_function(2, 10, "speed", 7.1)1

Arguments are matched to the parameters by position (i.e.
where they show up). This is called using positional

arguments.

37

def some_function(x1, x2, x3, x4):
 print("My arguments are", x1, x2, x3, x4)

1
2

We can also pass parameters by keyword:

some_function(5,12,-7, 13)
some_function(x3=-7, x1 = 5, x2 = 12, x4 = 13)

1
2

These two calls are equivalent!

38

You can list the keyword arguments in any order, but they
all must still be specified.

39

You can even mix them, though the positional arguments
have to come first.

def some_function(x1, x2, x3, x4):
 print("My arguments are", x1, x2, x3, x4)

1
2

40

Default Arugments
You can also specify default arguments for a
function. If you don't specify a corresponding

argument, the default is used.

def print_rectangle_area(width = 1.0, height = 2.0):
 area = width * height
 print("A rectangle with width", width,
 "and height", height,
 "has area", area)

1
2
3
4
5

What do these print?
print_rectangle_area()
print_rectangle_area(4.5, 7.6)
print_rectangle_area(height = 20.5, width = 5.2)
print_rectangle_area(4.5)
print_rectangle_area(height = 10.0)
print_rectangle_area(width = 5.25)

1
2
3
4
5
6
7

41

You can mix default and non-default arguments in
the definition of a function. Again, the non-default

arguments have to come first.

def email(address, messsage=""): #Okay!
 ...

def email(message="", address): #Not okay!
 ...

1
2
3
4
5
6

Have any of the built-in functions we've
used so far had default arguments?

42

main()

43

Python lets us write code outside of functions.

This is actually somewhat unusual!

x = 3 + 5
print("Hello world!")

1
2

x = 3 + 5
print("Hello world!")

1
2

#include<stdio.h>
int x = 3 + 5;
printf("Hello world!\n");

1
2
3

44

import math
def main():
 x = int(input("Enter a number: "))

 is_prime = x % 2 != 0
 divisor = 3
 limit = math.sqrt(x)
 while divisor < limit and is_prime:
 if x % divisor == 0:
 is_prime = False
 divisor += 2

 if is_prime:
 print(x, "is prime.")
 else:
 print(x, "is not prime.")

main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

45

Error Handling

inp = int(input("Command: "))

if inp != "quit":
 cmd_number = int(inp)
 if cmd_number != 0:
 cmd = get_command(cmd_number)
 if cmd != "invalid":
 print("You entered", cmd, ". Executing now...")
 exec_cmd(cmd)
 else:
 print("Command lookup gave an invalid command")
 else:
 print("You entered command 0, which cannot be looked up")
else:
 print("Goodbye!")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

46

Error Handling
inp = int(input("Command: "))

if inp == "quit":
 print("Goodbye!")
 return

cmd_number = int(inp)
if cmd_number == 0:
 print("You entered command 0, which cannot be looked up")
 return

cmd = get_command(cmd_number)
if cmd == "invalid":
 print("Command lookup gave an invalid command")
 return

print("You entered", cmd, ". Executing now...")
exec_cmd(cmd)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

What's our big problem here? 47

Error Handling
def main():
 inp = int(input("Command: "))

 if inp == "quit":
 print("Goodbye!")
 return

 cmd_number = int(inp)
 if cmd_number == 0:
 print("You entered command 0, which cannot be looked up")
 return

 cmd = get_command(cmd_number)
 if cmd == "invalid":
 print("Command lookup gave an invalid command")
 return

 print("You entered", cmd, ". Executing now...")
 exec_cmd(cmd)

main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21 48

There are two kinds of Python objects:

mutable: you can change them in your program
immutable: you cannot change them in your
program

Actually makes a new copy! 49

Data Type Description Example Mutability
int Integer. A counting number

of unlimited value.
42 immutable

float A real number. 3.1415926 immutable

str A sequence of characters.
Usually used to model text.

"Hello
world"

immutable

bool A truth value (True or False) True, False immutable

tuple Immutable sequence of
mixed types

(4.0, True) immutable

list Mutable sequence of mixed
types

[1,2,3,4,5] mutable

set Collection without duplicates mutable

dict A map from keys onto values {'a': 3, 'b': 4} mutable

50

If you pass a mutable object as an argument,
it can be changed by your function

If you pass an immutable object, it can't be
changed.

51

def increment(x):
 x += 1
 print(f"Value of x in the function: {x}")

x = 3
print(f"x is {x}")
increment(x)
print(f"x after function call: {x}")

1
2
3
4
5
6
7
8

def reverse_list(l):
 l.reverse()
 print(f"List in the function: {l}")

l = [1, 2, 3, 4, 5]
print(f"List is {l}")
reverse_list(l)
print(f"List after function call: {l}")

1
2
3
4
5
6
7
8

52

Last Bits

53

Scope
A variable in python has a scope, or a

region where it's valid.

def main():
 x = 3
 y = 4
 f1(x)

def f1(x):
 return x + y

1
2
3
4
5
6
7

54

A global variable is defined outside of a function
and is visible everywhere after it's defined. Using

these is usually considered bad practice.

A local variable is defined inside of a function, and
is visible from its definition until the end of the

function.

A local definition overrides a global one.

55

x = 1

def func():
 x = 2
 print(x)

func()
print(x)

1
2
3
4
5
6
7
8
9

56

Returning Multiple Values

def increment_multiple(x, y):
 return (x + 1, y + 1)

x1, x2 = increment_multiple(4, 5.2)
print(f"x1 is {x1} and x2 is {x2}")

1
2
3
4
5

57

