Functions

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin

Note: IPython

22:14:29 €) ipython

Python 3.10.4 (main, Mar 23 2022, 23:05:40) [GCC 11.2.0]

Type 'copyright', 'credits' or 'license' for more information
IPython 8.2.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: = (("Enter a number"))
Enter a number 33

In [2]: (f"{x} squared is {x**2}")
33 squared is 1089

In [3]: x ** 2
3 1089

Python 3.10.4 (main, Mar 23 2022, 23:05:40) [GCC 11.2.0] on Llinux
Type "help", "copyright", '"credits" or "license" for more information.
>>> x = int(input("Enter a number™"))
Enter a number33

>>> print(f"{x} squared s {x*x2}")
33 squared s 1089

>>> X k% 2

1089

Sometimes, we want to do the same thing over and

over again, maybe with slight variations.

Functions allow us to do this. We have already used

several built-in functions in Python.

Built-in Functions

A E
abs() enumerate()
aiter() eval()
all() exec()
any ()
anext() F
ascii() filter()
float()
B format()
bin() frozenset()
bool()
breakpoint() G
bytearray() getattr()
bytes() globals()
c H
callable() hasattr()
chr() hash()
classmethod() help()
compile() hex()
complex()
|
D id()
delattr() input()
dict() int
dir() isinstance()
divmod() issubclass()

iter()

L

len()
list()
locals()

map ()
max{)

memoryview()
min()

N
next()

0o
object()
oct()
open()
ord()

P
pou ()
print{]

property()

R

range()
repr()
reversed()
round()

S

set()
setattr()
slice()
sorted()
staticmethod()
str()

sum()

super()

T
tuple()
type()

Vv

vars()

z
zip()

__dmport__ ()

In addition, the python standard library comes with lots of
other modules.

Modules are Python code that contain related functions which
we can reuse. When you downloaded Python, you also
downloaded the standard modules (also referred to as the
"standard library").

Most of these modules are beyond the scope of this class.

We will use the math module, which contains many common
mathematical operations, and the random module, which
contains functions for generating random numbers.

https://docs.python.org/3.10/tutorial/modules.html

To use functions which are part of a module, we call the function
with the name of the module, a period (pronounced "dot"), and the
name of the function.

In [1]: math.sqrt(100)

Traceback (most recent call last)
Input In , in <cell line: 1>

>1-sqrt)

: name 'math' is not defined

and we have to import the module:
In [2]:

In [3]: math.sqrt(100)
C 10.0

If you're writing a file, imports should go at the very
top of the file. P

5

Lots of functions in math!

Function Description Example
fabs (x) Returns the absolute value of the argument. fabs (-2) is 2
cell (x) Rounds x up to its nearest integer and ceil(2.1) 1is 3
returns this integer. ceil(-2.1) is -2
floor (x) Rounds x down to its nearest integer and floor(2.1) is 2
returns this integer. floor(-2.1) is -3
exp (x) Returns the exponential function of x (e”x). exp(l) is 2.71828
log (x) Returns the natural logarithm of x. log(2.71828) 1is 1.0
log(x, base) Returns the logarithm of x for the specified loglO (10, 10) is 1
base.
sqrt (x) Returns the sgquare root of x. sqrt (4.0) is 2
sin (x) Returns the sine of x. x represents an angle sin(3.14159 / 2) is 1
in radians. sin(3.14159) is O
asin (x) Returns the angle in radians for the inverse asin(1.0) is 1.57
of sine. asin(0.5) is 0.523599
cos (x) Returns the cosine of x. x represents an cos (3.14159 / 2) is O
angle in radians. cos(3.14159) is -1
acos (x) Returns the angle in radians for the inverse acos(1.0) is O
of cosine. acos (0.5) is 1.0472
tan (x) Returns the tangent of x. x represents an tan(3.14159 / 4) is 1
angle in radians. tan(0.0) is O
fmed (x, V) Returns the remainder of x/y as double. fmod (2.4, 1.3) is 1.1
degrees (x) Converts angle x from radians to degrees degrees (1.57) is 90
radians (x) Converts angle x from degrees to radians radians (90) is 1.57

Random

There are several useful functions defined in random:

e randint(a, b): generate a random integer in |a..b]
e randrange(a,b): generate a random integer in [a..b)
e random(): generate a float in the range (0..1)

How should we simulate flipping a two-
sided coin?

Examples with random

random.randint(1,2)

>>> random.random()
@.8331383484207157
random.randint(1,2) >>> random.random()
@.37159337817219584
>>> random.random()
random.randint(1,2) @ .6945382999476001
>>> random.random()
@.2515359514910689
random.randint(1, >>> random.random()
0.864217164416933
>>> random.random()
random. randint(1, @.19093256538001913
>>> for x in range(10):
print(random.randint(1l, 100))

random.randint(1,2)

random.randint(1,2)

random.randint(1,6)

random.randint(1,

random.randint(1,
random.randint(1,
random.randrange(1,2)
random.randrange(1,2)
random.randrange(1,
random.randrange(1,
random.randrange(1,

random.randrange(1,

random.randrange(1,

How to Import

Typing the name of the module every time can be annoying.

Most IDEs have features to reduce the amount of typing
needed.

e waaaagh.py

))
sqrt(x)}+")

How to Import

We can also import specific functions from a module.

randint

. randint (1, 100)
40

: randint (1, 10)
2

: random()

Traceback (most recent call last)
Input In [4], in <cell line: 1>

----> 1 [()

: name 'random' is not defined

import everything
from random

*

In : random()
6 0.621890257623214

Why not always import all? Pm

Writing Functions

def compute max of(numl, num2, num3)
if numl > num2 and numl > num3:
return numl
elif num2 > numl and num2 > num3:
return num?2
else:
return num3

N OO0 WDN

What happens when | call this?

1 x = compute max of(7, 10,
2 print(x)

13)

12

= W N

We've seen |lots of system-defined functions. Now it's
time to define our own.

def function name(list of parameters):
body statement 1
body statement 2

This defines a block of code that performs a specific
task. It can reference any variables in the list of
parameters. It may or may not return a value. These
are also called arguments.

13

Function name Arguments
An identifier by which the <--~, ,~==% (Contains a list of values

function is called : : passed to the function
I |

def name(arguments):

| statement ’
Indentation Function body
Function body must g---. ° tatement \--g [Thisis executed each time
be indented o the function is called
return value -

Return value

- ——

~----p Ends function call & sends
data back to the program

14

Parameters
Function Definition

add(a, b):
ra+b

Function Call

add(!)

getKT.com

15

oON O x W DN K

Suppose you want to sum all the integers from 1 to n.

Returns the sum of values from 1 to n.
def sum to n(n):
total = 0
for 1 in range(l, n+l):
total += 1
return total

Question: does this actually compute anything?

We still need to call the function! Otherwise, nothing
actually gets run. A function acts like a "recipe" to do
some computation, but writing the recipe down
doesn't cause a cake to be baked.

1 def main():
2 print(sum to n(1l))
3 print(sum to n(1000))

Output:
1
500500

17

O & W

Observations

def sum to n(n):

Here, nis a formal parameter. It is used as a placeholder for an
actual parameter (e.g. 100, 1000) used in an actual call.

sum_to_int(n) returns an int value. This means that it can
be used anywhere an int could be used.

X = sum_to n(30)
print (x)
print("Even"” if sum to n(5) % 2 == 0 else "0dd")

for i in range(l, 30):
print(i, sum to n(1i))

A

Return

When a return statement is executed, you immediately
return to the calling environment.

If you call return with a value, the caller gets that value.

If you call return without a value, Python implicitly
returns None for you. Do this carefully.

Every function has an implicit return at the end.

def print x(x):
print (x)

x =10
y = print x(Xx)
print(y)

SO O s W DN B

Function In/Out

An important note: when we've been writing
scripts so far, we've been using input() and print()
to communicate with the user.

In general, for functions, you want to get inputs
from arguments and pass outputs using return.

A common mistake:

def double num(x):
y = 2 * X
print(y)

def main():
X = int(input("Enter a number to double: "))
y = double num(x)
print (f"Double of {x} is {y}")

0O J o O W DN -

The Power of
Abstraction

Once we've defined sum_to_n, we can use it without
worrying about the definition.

We need to know what it does, but we do not
care about how it does it.

This is called abstraction.

Used properly, it is incredibly,
unbelievably powerful.

Unlimited power!

22

One day, we realize we can program
sum_to_n much more efficiently using a
method discovered by Gauss:

1 # um of values from 1 to n.
2 de
3 1 # Returns the sum of values from 1 to n.
4 (1, n+l): 2 def sum to n(n):
Z 3 return (n + 1) * n // 2
1 def main():
2 max num = 1000000
3 max sum = sum to n(max_ num)
4 print (£"The sum of the first {max num} numbers is {max sum}")

We don't have to change any other code!! If we'd written
the code in-line, we'd have to find all other instances. 23

More Examples

and docstrings

Docstrings

Python supports a special version of documentation for
a function called a docstring. It goes right below the
function definition at the same indentation as the bodly.

1 def add nums(a, b):
2 """Adds a and b together"""
3 return a + b

def dummy func(a, b):
"""Tf we need them to, docstrings can even be multiline!

a: an input
b: an input
returns: the sum of a and b

0O O O WDN -

return a + b

25

o U D W N =

Other Examples

def multiply to n(n):
"""Multiplies all values from 1 to n. This is
also known as a factorial function"""
result = 1
for i in range(2, n+l):
result *= result

This function...doesn't work.

26

Convert °C to °F, and °F to °C

1 def fahrenheit to celsius(degrees f):
2 return 5 / 9 * (degrees f - 32)

3

4 def celsius to fahrenheit(degrees c):
5 return 9 / 5 * degrees c + 32

27

Write a program which
prints a conversion table.

Convert °F in the range [-80, 130] every 10 °F.

Primes

Suppose you want to print out a table of

the first 100 primes, 10 per line

You could do this without functions,

but it would be a mess.

Much better idea: find and use
functional abstraction. Find
parts of the algorithm that can
be coded separately and
"packaged" as functions.

11 |

13

17

19

23

29

31

37

41

43

47

o

59

61

67

71

73

79

83

89

2l

101

103

107

109

113

127

131

137

139

149

151

157

163

167

173

179

181

191

193

197 |

199

211

223

227

229

233

239

241

251

257

263

269

271

277

281

283
353
419

293

421

307
359

367
431

311
373
433

313
378
439

317
383

443

331

389

449

337
397
457

347
401
461

349
409

463

467

479

487

491

499

503

509

521

523

541

30

Here's some Python-like pseduocode to print 100 primes:

def print 100 primes():
prime count = 0
num = 0

while prime count < 100:
if (we already printed 10 on this line):
go to a new line
next prime = (the next prime > num)
print next prime on the current line
num = next prime
prime count = 1

O O 00 JO Ul b WDN -

[

Note that most of this is straightforward python. The only
new part is how to find the next prime. Let's make that a
function.

31

Assuming we can get the next
prime, write a function to print the
first n primes, 10 per row.

Now that we have that, let's write a
function to get the next prime.

while (guess 1s not prime)
guess += 1
return guess

Pseudocode:
1 def get next prime(num):
2 if num < 2:
3 return 2
4 else:
5 guess num + 1
6
7
8

Now we just need to
figure out if a
number is prime.

Final Example

Let's say we just want to find and print k primes, starting
from a given number.

Positional Arguments

and kwargs

1 def some function(xl, x2, x3, x4)
2 c e

—

1 some function(2, 10, "speed", 7.1)

Arguments are matched to the parameters by position (i.e.
where they show up). This is called using positional
arguments.

37

1 def some function(xl, x2, x3, x4):
2 print("My arguments are", x1, x2, x3, x4)

We can also pass parameters by keyword:

1 some function(5,12,-7, 13)
2 some_ function(x3=-7, x1 =5, x2 = 12, x4 = 13)

These two calls are equivalent!

You can list the keyword arguments in any order, but they
all must still be specified.

(x1, x2, X3, x4):
("My arguments are", x1, x2, x3, x4)

In [2]: some_function(x3

Traceback (most recent call last)

Input In [2], 1in <cell llne

: some_function() missing 2 required positional arguments: 'x1' and 'x2'

39

You can even mix them, though the positional arguments
have to come first.

1 def some function(xl, x2, x3, %4):
2 print("My arguments are",\x}¥, x2, x3, x4)

2,

In [4]: some_function(1,
My arguments are 1 2 4 7

In [5]: some_function(xl =1, 2, 7, 4)
Input In [5]

A

positional argument follows keyword argument

40

Default Arugments

You can also specify default arguments for a
function. If you don't specify a corresponding
argument, the default is used.

def print rectangle area(width = 1.0, height = 2.0):
area = width * height
print ("A rectangle with width", width,
"and height", height,
"has area", area)

O & WD K

What do these print?

print rectangle area()

print rectangle area(4.5, 7.6)

print rectangle area(height = 20.5, width = 5.2)
print rectangle area(4.5)

print rectangle area(height = 10.0)

print rectangle area(width = 5.25)

N o0l WD

O U1 & W DN K

You can mix default and non-default arguments in
the definition of a function. Again, the non-default
arguments have to come first.

def email (address, messsage=""): #0kay !

def email(message="", address): #Not okay!

Have any of the built-in functions we've
used so far had default arguments?

42

main()

test.c:2:8:

2 | pri

Python lets us write code outside of functions.

This is actually somewhat unusual!

1 x =3+ 5
2 print("Hello world!")

1 #include<stdio.h>
2 1int x 3 + 5;
3 printf("Hello world!\n");

expected declaration specifiers or ‘...’ before string constant
ntf()5

44

1 import math
2 def main():

3

00 J O U1 Wb

9
10
11
12
13
14
15
16

X = int(input("Enter a number: "))
is prime = x % 2 !=0
divisor = 3

limit = math.sqgrt(x)

while divisor < limit and 1s prime:

if x % divisor ==
l1s prime = False
divisor += 2

if is prime:

print(x, "is prime.")
else:

print(x, "is not prime.")

45

00 o Ul WDN K

=
= O W

12
13
14
15

Error Handling

inp = int(input("Command: "))

if inp != "quit'":
cmd number = int(inp)
if cmd number != O0:
cmd = get command(cmd number)
if emd != "invalid":
print("You entered", cmd,
exec_cmd(cmd)
else:
print("Command lookup gave an invalid command")
else:

Executing now...'")

print("You entered command 0, which cannot be looked up")

else:
print ("Goodbye!")

46

0O o Ul W IDN K

e e e e
0O U WN KR OV

Error Handling

inp = int(input("Command: "))

if inp == "quit":
print ("Goodbye!")
return

cmd number = int(inp)

if cmd number ==
print("You entered command 0, which cannot be looked up")
return

cmd = get command(cmd number)
if cmd == "invalid":
print ("Command lookup gave an invalid command")
return
print("You entered", cmd, "
exec_cmd(cmd)

Executing now...'")

What's our big problem here?

47

Error Handling

1 def main():
2 inp = int(input("Command: "))
3
4 if inp == "quit":
5 print ("Goodbye!")
6 return
7
8 cmd number = int(inp)
9 if cmd number ==
10 print("You entered command 0, which cannot be looked up")
11 return
12
13 cmd = get command(cmd number)
14 if cmd == "invalid":
15 print("Command lookup gave an invalid command")
16 return
17
18 print("You entered", cmd, ". Executing now...'")
19 exec_cmd(cmd)
20

21 main() 48

There are two kinds of Python objects:

e mutable: you can change them in your program
e immutable: you cannot change them in your
program

>>> x = 37

>>> X

37

>>> dd(x)
140509108241 776

>>> X = X + 10

>>> X

47

>>> id(x)

140509108242096
Actually makes a new copy!

49

Data Type |Description Example |Mutability

int Integer. A counting number |42 immutable
of unlimited value.

float A real number. 3.1415926 |immutable

Str A sequence of characters. "Hello immutable
Usually used to model text. |world"

bool A truth value (True or False) |True, False |immutable

tuple Immutable sequence of (4.0, True) |[immutable
mixed types

list Mutable sequence of mixed |[1,2,3,4,5] |mutable
types

set Collection without duplicates mutable

dict A map from keys onto values [{'a": 3, 'b": 4} |mutable

50

If you pass a mutable object as an argument,
it can be changed by your function

If you pass an immutable object, it can't be
changed.

51

00 J o Ul s WDN K-

0O Jo O s WDN K

def increment(x):
x += 1
print(f"Value of x in the function: {x}")

X = 3

print(f"x is {x}")

increment (x)

print(f"x after function call: {x}")

def reverse list(1l):
l.reverse()
print(£f"List in the function: {1}")

1l =11, 2, 3, 4, 5]

print(f"List is {1}")

reverse list(1)

print(f"List after function call: {1}") P
52

Last Bits

Scope

A variable in python has a scope, or a
region where it's valid.

def main():
X = 3
y = 4
fl(x)

def fl(x):
return x + y

~N O O s W DN R

A global variable is defined outside of a function
and is visible everywhere after it's defined. Using
these is usually considered bad practice.

A local variable is defined inside of a function, and
is visible from its definition until the end of the
function.

A local definition overrides a global one.

55

O 0O J OO O & W DN B

x = 1

def func():
X = 2
print (x)

func ()
print (x)

OO s WD -

Returning Multiple Values

def increment multiple(x, y):
return (x + 1, y + 1)

x1l, X2 = increment multiple(4, 5.2)
print(£f"x1 is {x1} and x2 is {x2}")

