
Intro to Programming

Summer 2022

1

About this Course

We will learn to design and implement computer programs
in order to solve problems.
Assumption: you have never written a line of code before.

output
variables
errors
reserved words
operators + computations
constants
built-in math functions
conditional execution

iteration
programmer-defined
functions
strings
lists (1D and 2D)
Files
Exceptions
Dictionaries
Objects and Classes

2

Programming and CS
Computer science explores what it's possible to
do with computers. Programming is getting the

computer to actually do it.

It might be possible to
create a self-driving car,

but without the
programming and

software to control the
vehicle, it's not going to

work!

3

Programming
Starts off simple....

...but gets really hard, really fast.

Given the structure to
the left, where each

line has a cost
associated with it, find

the cheapest way to
travel between any

two circles.

4

About Me

Graduate Student in CS Department
Undergraduate: UC Merced

Chemistry (spectroscopy +
nanoparticle chemistry)
Applied Mathematics

Helped teach (TA) several courses in
the CS department

5

How I Got into Computer Science
Very late entry into the field

Initially focused around supporting experiments

Soon became interesting in constructing
systems as an activity.

6

Past Computational Projects

Can we identify what medication a particular pill
corresponds to from a photo? (UC Merced)

Does allowing cross-disciplinary study in academics
create more innovation? (UC Merced)

How can we accelerate classical machine learning
algorithms to work on huge image systems? (UIUC)

How should we design large-scale systems in the
presence of hardware errors? (ORNL)

7

Hamming's Maxim

“
 The purpose of
computation is

insight, not numbers

8

Course Structure

9

Materials

There is no required book for this class. The syllabus
has online resources if you would like them.

We will write some programs together in class--
these will be uploaded to Canvas.

10

Grading

11

Homework (45%)
There are two homework assignments a week.

Assignment "A" released Monday after class, due
end of day on Friday
Assignment "B" released Wednesday after class,
due end of day the next Monday

Grades will be based off of the 1/3/5 system:

1: Made an effort, but didn't really complete it
3: Had a general idea of what was going on
5: Everything is correct

Note: I will leave feedback for you on your
programs. YOU NEED TO READ THIS.

12

Exam (15%)

There will be a midterm at the start of July
and a final exam at the end. Each will be

worth 15% of your grade.

A mix of multiple choice/short answer. Will
generally have three components:

Answer questions about the Python
language
Answer questions about code in the
Python language
Write Python code 13

Final Project (20%)
A project chosen by you! Can work alone or in pairs.

You should start thinking about project ideas
shortly after the midterm (I will remind you

about this when the time comes)

The idea needs to be approved by me, to make
sure you're not trying to do something way too

hard or too easy.

Last day of class will (partially) be used to present
and demo final projects. This presentation will be

part of your grade.

14

Participation (5%)

Based on how much you participate in class.

May be extra credit in this section depending on
participation levels.

15

Assignments
Start off simple, but get challenging fast
Individual assignments
Turn in the right thing: fill out the header, and make the
format correct, or you will lose points
Assignments come out after class, and are due at the end
of the day on their due date.

Designed so that you will have two class periods to ask
for help for every assignment.
This is going to be a little weird around the midterm +
4th of July.

Graded on a combination of correctness and program
hygiene (coding style, best practices, etc.)

Personally, I would suggest getting A done on Tuesday and B done

on Thursday so you can have the weekend off! 16

Insight Questions
Starting with Homework 1b, the assignments will
start asking you to do a little work beyond simply

writing a correct program.

We will try to gain insight on the nature of the
problem. This may take the form of seeing how

the problem works, how long it takes to run, how
much space it takes, or other such questions.

17

Academic Honesty
In professional engineering contexts, signing your name on

something means you personally attest to its correctness

18

“ Gillum and Associates failed to review
the initial design thoroughly...

“ Reports...cited a feedback loop of architects'
unverified assumptions, each having believed

that someone else had performed calculations
and checked reinforcements

Result: Gilium and engineers at the
company were criminally charged,

and lost their licenses to practice
engineering.

19

Honesty in Programming
It becomes much easier to lie about the big things

when you've already lied about smaller things.

All code that is not your own must be
tagged with the following information:

How much of the code is not yours
Where it came from
Why you are allowed to use it

Do not write anyone else's code for them.
When helping, make sure that neither of

you are actively writing code.

ASK
20

Office Hours

21

Getting Help

Post to Piazza

You can make yourself anonymous to
other students
You can post an instructor-only
question
Do not post more than 2 lines of code
on a public post
Any non-personal course questions
sent by email will be redirected to
Piazza

22

Succeeding
Programming is not a

spectator sport.

You cannot learn to program by attending class
or watching YouTube any more than you can

learn to ride a bike by doing these things.

In order to learn to program, you need to
actually write programs.

23

Succeeding
Learning something new is scary!

Have to try something without
know if you can do it or not
If you can't, feels really bad

But our goal isn't to feel good all the
time....our goal is to learn programming!

It is okay to make mistakes.

Generally, people who have made more
mistakes know more things, because

they've just done more stuff.
24

Succeeding
This entire course is cumulative. The material builds

on itself. If you're lost, it's not going to get better
unless you try to make it better.

Come to class and participate!
Start on homework early
Get help from me or on Piazza when
you get stuck.
Ask questions when you need help
Do more practice problems!

https://codingbat.com/python
Selection on Canvas

25

Succeeding

Cannot succeed by brute-force memorization.
Programming is a skill.
Learn by doing.
If you are new to programming, I strongly
recommend doing lots of practice problems.

26

Suggested Startup
Make sure you can access Canvas and Piazza.
Download and install Python (see Assignment 0)
Review Bill Young's . It's
not the exact same class as ours, but the advice there
applies to this class.
Check out Julia Evans's suggestions on

How to Succeed in CS 303E

how to ask
good questions

27

https://www.cs.utexas.edu/~byoung/cs303e/how-to-succeed-in-cs303e.html
https://jvns.ca/wizard-zine.pdf

A Quick Demo!

28

