
Lists

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin 1

The list class is one of the most useful in Python. A
sequence of elements which can be accessed.

Two major differences:

Strings are sequences of characters, while
lists can be sequences of anything.
Strings are immutable, lists are mutable.

When you change a list, it doesn't
make a new copy--it changes the

actual contents of the list.

2

Suppose you have 30 different test grades to average.
Is this a good solution?

with open("grades.txt", "r") as infile:
 grade1 = int(infile.readline())
 grade2 = int(infile.readline())
 grade3 = int(infile.readline())
 grade4 = int(infile.readline())
 grade5 = int(infile.readline())
 grade6 = int(infile.readline())
 grade7 = int(infile.readline())
 grade8 = int(infile.readline())
 grade9 = int(infile.readline())
 grade10 = int(infile.readline())
 grade11 = int(infile.readline())
 grade12 = int(infile.readline())
 grade13 = int(infile.readline())
 grade14 = int(infile.readline())
 grade15 = int(infile.readline())

total = grade1 + grade2 + grade3 + grade4 + grade5\
 + grade6 + grade7 + grade8 + grade9 + grade10\
 + grade11 + grade12 + grade13 + grade14 + grade15
average = total / 15
print(f"Class average is {average}")

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

What's wrong with this solution? 3

grades = []
with open("grades.txt", "r") as infile:
 for line in infile:
 g = int(line)
 grades.append(g)

total = 0
for score in grades:
 total += score
average = total / len(grades)
print(f"Class average is {average}")

1
2
3
4
5
6
7
8
9

10
11

Note that we're using a for-loop here.
Previously, for-loops were not that useful,

but they are a natural fit for looping
through lists!

4

Operations on Lists

5

Indexing
Suppose we have a list with 10 elements.

We can get elements by indexing them.

lst = [1, 3, 5, 7, 9, 11, 13, 15, 17]

print(lst[0])
print(lst[3])
print(lst[-1])
print(lst[100])

1
2
3
4
5
6

Indexing out-of-bounds will give us an error.

6

7

Exercise
Create a list with the numbers 1 through 10.

Then, double each number inside the list, so that we

get [2,4,6,8,10,12,14,16,18,20].

Can you triple each number? Quadruple it?

Hint: to get list length, use the len() function

8

Slicing
Can gather elements of lists into a new list.

list[start:end]

If start is not given, assumes zero
If end is not given, assumes len(list).

Like in ranges, the last element is not included.

lst = [1, 3, 5, 7, 9, 11, 13, 15, 17]

print(lst[0:])
print(lst[4:])
print(lst[:3])
print(lst[5:-2])

1
2
3
4
5
6

9

Notice how I named my list "lst" instead of "list"? That's
because list is a built-in function.

Same reason we don't name strings "str" or files "file".

10

Lists vs Arrays
Many other languages have something called an "array"
type. Python lists are similar, but much more powerful.

Arrays are

All same element type
Fixed size
very fast access time

Lists are

possibly mixed element
types
variable size
fast access time 11

What kinds of operations
should we put on lists?

12

Sequence Operations
Lists are sequences, and inherit various

functions from sequences.
Function Description
x in s x is in sequence s

x not in s x is not in sequence s

s1 + s2 concatenates two sequences

s * n repeat sequences n times

s[i] Get i-th element of sequence

s[i:j] Slice sequence from i to j-1

len(s) Get length of sequence

min/max/sum Compute min/max/sum, if possible

> >= < <= == != Compare lists 13

14

Exercise

Given two input lists and a target number,
find out if the target is in the first list,

second list, both, or neither.

How should we represent this output?

15

grades = []
with open("grades.txt", "r") as infile:
 g = int(infile.readline())
 grades.append(g)

average = sum(grades) / len(grades)
print(f"Class average is {average}")

1
2
3
4
5
6
7

Grade averages, a
better version

16

Comparing Lists
We compare the list lexicographically: if first
elements are uneqal, return as-is. If they are

equal, continue to the next, and so on.

17

Loops and Comprehensions

18

As mentioned, we can use for-loops to easily iterate
over all elements of a list.

list1 = [1, 3, 5, 7]
for elem in list1:
 print(elem, end=" ")

1
2
3

Could use a while-loop, but clunkier

list1 = [1, 3, 5, 7]
index = 0
while index < len(list1)
 elem = list1[index]
 print(elem, end=" ")

1
2
3
4
5

19

We can build lists using list comprehension syntax.

20

List comprehensions let us build lists really
easily, even from files!

with open("grades.txt", "r") as infile:
 grades = [int(entry) for entry in infile]

total = 0
for score in grades:
 total += score
average = total / len(grades)
print(f"Class average is {average}")

1
2
3
4
5
6
7
8

21

Example
Build an even filtering function. It takes an

input list and returns a new list which
contains elements of a particular type.

Do this in a single line with list

comprehensions!

22

Project Proposals
Will be due at the same time as HW 8.

Come up with an idea for a small project

you can write with Python.

Doesn't have to be flashy or traditionally-
programming related.

23

Ideas
Write a simple 2d game (e.g. 2D racing, or
Breakout/Tetris)
Write a chemical network simulator with a simple
variant of the Gillespie algorithm
Write a program which simulates a bridge and
highlights where the weak points are.
Create a simple scanner for known malware (e.g.
computer virus) files

Written proposal is so that I can look and see if the
project is reasonably-scoped!

24

Proposal Contents

Your name (and partner's name, if applicable)
Description of what you want to do
How you're going to meet the project requirements:

Some input method
Some output method
Code organization requirements

Two examples of things your program will do
Three examples of things your program will not do

25

More List Methods

26

Method Description
t.append(x) add x to the end of t

t.count(x) count how many times x shows up in t

t.extend(l1) append elements of l1 to t

t.index(x) index of first occurrence of x in t

t.insert(x, i) insert x into t at position i

t.pop() remove+return the last element of t

t.pop(i) remove+return the i-th element of t

t.remove(x) remove the first occurrence of x from t

t.reverse() reverse the elements of t

t.sort() sort the elements of t

These methods work for lists, not sequences in
general. Note they change the list.

27

Common mistake
list1 = [1,2,3,4,5]
list1 = list1.sort()
print(f"List 1 is {list1}")

1
2
3

28

29

30

31

Exercise
List complement: given a list which contains some

numbers in [0..10], return a second list which contains
all numbers in [0..10] not in the first.

Example:

Input: [1,3,5,7,9]
Output: [0,2,4,6,8,10]

Do this without using comprehensions (prefer .append)

32

Everyday I'm shufflin'
Another useful method on lists is random.shuffle()
from the random module, which randomizes the

order of a list.

33

List Mutability
Surprises and Traps

34

What does this code do?
nums = [12, 56, 37, 12]
n2 = nums
n2[1] = 73
print(nums)

1
2
3
4

35

Lots of ways to make a copy

l = [1,2,3,4,5]
l1 = l # Not a copy! Same list!
l2 = l.copy() # makes a copy
l3 = list(l) # makes a copy
l4 = l[:] # makes a copy
l5 = [i for i in l] # makes a copy

1
2
3
4
5
6

36

Passing to Function
When you pass a list to a function, the original can be

changed.

def alter_list(lst):
 lst.pop()

def main():
 l1 =[1,2,3,4]
 print("Before call:", l1)
 alter(l1)
 print("After call:", l2)

main()

1
2
3
4
5
6
7
8
9
10

37

Practice
Working with lists can be hard!

Even 2nd and 3rd year computer science

students struggle with some tasks.

To get better, we have to practice.

38

Practice Problems
Given a list of numbers (either int or float), check if it
is stored in ascending order
Get last index of a given value in a list (opposite of
.index() method)
Given two array of ints, return an array that contains
difference between corresponding elements.

What about max? Sum?
What do we do if it's a different size?

Are all elements of a given list unique?
Given a list of ints, place all even values before any
odd values.

39

Even More Practice
https://codingbat.com/python
List-1 and List-2 problem sets

40

