
Classes and OOP

adapted from material by Mike Scott and Bill
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Think back to averaging student grades

[ "student1", 25, 50 ]

We did this by accessing entry[1] and entry[2].

Now suddenly, our format changes!

[ "student1", "cs119" 25, 50 ]

New! The class the
scores are from.
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What went wrong?
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We were using entry[1] as shorthand for
"student's midterm grade", but there's
no reason why it has to be at entry 1!

Let's bundle related data
together in a meaningful

manner!
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class StudentGrade(object):
  name = ""
  exam1_grade = 0
  exam2_grade = 0
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entry1 = [ "Student1", 99, 98 ]
entry2 = [ "Student2", "cs119", 98, 99 ]
 
grade1 = StudentGrade()
grade1.name = entry1[0]
grade1.exam1_grade = entry1[1]
grade1.exam2_grade = entry1[2]
 
grade2 = StudentGrade()
grade2.name = entry2[0]
grade2.exam1_grade = entry2[2]  # Different!
grade2.exam2_grade = entry2[3]
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Object Oriented Programming

Basic idea: turn your program into a collection of object. An
object has two things:

Data which characterizes its current state
A set of actions (called methods) that it can perform

In a pure object-oriented system, the only way that a
programmer interacts with objects is by calling its methods.

These things that belong to a class are
often called class members.
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Let's equip our StudentGrade class with some methods!

Methods are written like normal functions, with two extra rules:

They have to be indented the same amount as other class
members
Their first argument has to be the special word "self".

class StudentGrade(object):
  name = ""
  exam1_grade = 0
  exam2_grade = 0
  
  def calculate_avg(self):
    return self.exam1_grade + self.exam2_grade
  
  def from_values(self, name, e1g, e2g):
    self.name = name
    self.exam1_grade = e1g
    self.exam2_grade = e2g
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First method: calculate grade average
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Why Objects?
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Hide Details!

# Returns the sum of values from 1 to n.
def sum_to_n(n):
  total = 0
  for i in range(1, n+1):
    total += i
  return total
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# Returns the sum of values from 1 to n.
def sum_to_n(n):
 return (n + 1) * n // 2
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def main():
  max_num = 1000000
  max_sum = sum_to_n(max_num)
  print(f"The sum of the first {max_num} numbers is {max_sum}")
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Enforce Safety!

num_students = 30
for x in range(num_drops):
  num_students -= 1
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mycourse = Course(30)
for x in range(num_drops):
  mycourse.drop_student()
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A natural way to approach
some problems
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Bank Account
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Design a bank
account class.

In the USA, the FDIC insures all accounts
up to $250,000.
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Special Methods
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Python gives us a few special methods that we can
implement. These are used implicitly in other contexts.
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__init__
The __init__ method is called when the object is

initialized. It replaces the default initializer.
class StudentGrade(object):
  name = ""
  exam1_grade = 0
  exam2_grade = 0
  
  def calculate_avg(self):
    return self.exam1_grade + self.exam2_grade
  
  def from_values(self, name, e1g, e2g):
    self.name = name
    self.exam1_grade = e1g
    self.exam2_grade = e2g
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  name = ""
  exam1_grade = 0
  exam2_grade = 0
  
  def calculate_avg(self):
    return self.exam1_grade + self.exam2_grade
  
  def __init__(self, name, e1g, e2g):
    self.name = name
    self.exam1_grade = e1g
    self.exam2_grade = e2g
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class StudentGrade(object):
  name = ""
  exam1_grade = 0
  exam2_grade = 0
  
  def calculate_avg(self):
    return self.exam1_grade + self.exam2_grade
  
  def __init__(self, name, e1g, e2g):
    self.name = name
    self.exam1_grade = e1g
    self.exam2_grade = e2g
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## Before:
 
g = StudentGrade()
g.from_values(lst[0], lst[1], lst[2])
 
## After
g = StudentGrade(lst[0], lst[1], lst[2])
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class StudentGrade(object):
  name = ""
  exam1_grade = 0
  exam2_grade = 0
  
  def calculate_avg(self):
    return self.exam1_grade + self.exam2_grade
  
  def __init__(self, name, e1g, e2g):
    self.name = name
    self.exam1_grade = e1g
    self.exam2_grade = e2g
    
  def __str__(self):
    ??
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