
Classes and OOP

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin 1

Think back to averaging student grades

["student1", 25, 50]

We did this by accessing entry[1] and entry[2].

Now suddenly, our format changes!

["student1", "cs119" 25, 50]

New! The class the
scores are from.

2

What went wrong?

3

We were using entry[1] as shorthand for
"student's midterm grade", but there's
no reason why it has to be at entry 1!

Let's bundle related data
together in a meaningful

manner!
4

class StudentGrade(object):
 name = ""
 exam1_grade = 0
 exam2_grade = 0

1
2
3
4

entry1 = ["Student1", 99, 98]
entry2 = ["Student2", "cs119", 98, 99]

grade1 = StudentGrade()
grade1.name = entry1[0]
grade1.exam1_grade = entry1[1]
grade1.exam2_grade = entry1[2]

grade2 = StudentGrade()
grade2.name = entry2[0]
grade2.exam1_grade = entry2[2] # Different!
grade2.exam2_grade = entry2[3]

1
2
3
4
5
6
7
8
9
10
11
12

5

Object Oriented Programming

Basic idea: turn your program into a collection of object. An
object has two things:

Data which characterizes its current state
A set of actions (called methods) that it can perform

In a pure object-oriented system, the only way that a
programmer interacts with objects is by calling its methods.

These things that belong to a class are
often called class members.

6

Let's equip our StudentGrade class with some methods!

Methods are written like normal functions, with two extra rules:

They have to be indented the same amount as other class
members
Their first argument has to be the special word "self".

class StudentGrade(object):
 name = ""
 exam1_grade = 0
 exam2_grade = 0

 def calculate_avg(self):
 return self.exam1_grade + self.exam2_grade

 def from_values(self, name, e1g, e2g):
 self.name = name
 self.exam1_grade = e1g
 self.exam2_grade = e2g

1
2
3
4
5
6
7
8
9

10
11
12

First method: calculate grade average

7

Why Objects?

8

Hide Details!

Returns the sum of values from 1 to n.
def sum_to_n(n):
 total = 0
 for i in range(1, n+1):
 total += i
 return total

1
2
3
4
5
6

Returns the sum of values from 1 to n.
def sum_to_n(n):
 return (n + 1) * n // 2

1
2
3

def main():
 max_num = 1000000
 max_sum = sum_to_n(max_num)
 print(f"The sum of the first {max_num} numbers is {max_sum}")

1
2
3
4

9

Enforce Safety!

num_students = 30
for x in range(num_drops):
 num_students -= 1

1
2
3

mycourse = Course(30)
for x in range(num_drops):
 mycourse.drop_student()

1
2
3

10

A natural way to approach
some problems

11

Bank Account

12

Design a bank
account class.

In the USA, the FDIC insures all accounts
up to $250,000.

13

Special Methods

14

Python gives us a few special methods that we can
implement. These are used implicitly in other contexts.

15

__init__
The __init__ method is called when the object is

initialized. It replaces the default initializer.
class StudentGrade(object):
 name = ""
 exam1_grade = 0
 exam2_grade = 0

 def calculate_avg(self):
 return self.exam1_grade + self.exam2_grade

 def from_values(self, name, e1g, e2g):
 self.name = name
 self.exam1_grade = e1g
 self.exam2_grade = e2g

1
2
3
4
5
6
7
8
9

10
11
12 class StudentGrade(object):

 name = ""
 exam1_grade = 0
 exam2_grade = 0

 def calculate_avg(self):
 return self.exam1_grade + self.exam2_grade

 def __init__(self, name, e1g, e2g):
 self.name = name
 self.exam1_grade = e1g
 self.exam2_grade = e2g

1
2
3
4
5
6
7
8
9

10
11
12

16

class StudentGrade(object):
 name = ""
 exam1_grade = 0
 exam2_grade = 0

 def calculate_avg(self):
 return self.exam1_grade + self.exam2_grade

 def __init__(self, name, e1g, e2g):
 self.name = name
 self.exam1_grade = e1g
 self.exam2_grade = e2g

1
2
3
4
5
6
7
8
9

10
11
12

Before:

g = StudentGrade()
g.from_values(lst[0], lst[1], lst[2])

After
g = StudentGrade(lst[0], lst[1], lst[2])

1
2
3
4
5
6
7

17

class StudentGrade(object):
 name = ""
 exam1_grade = 0
 exam2_grade = 0

 def calculate_avg(self):
 return self.exam1_grade + self.exam2_grade

 def __init__(self, name, e1g, e2g):
 self.name = name
 self.exam1_grade = e1g
 self.exam2_grade = e2g

 def __str__(self):
 ??

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

18

