
Loops and Iteration

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin 1

Repetitive Activity
Sometimes, we need to do the same thing many times.

2

So let's be a little clever about it!

Loops allow us to repeat things multiple times.

Note: we don't actually have to do the exact same
thing over and over---we can change it a little bit.

Computers can do billions of operations a second.
Loops are how we harness this power!

3

def main():
 text = input("Please enter the number three: ")
 value = int(text)
 num_times_failed = 0
 while value != 3:
 text = input("That was not three! Please enter the number three: ")
 value = int(text)
 num_times_failed += 1

 if num_times_failed < 4:
 print("Thank you!")
 else:
 print("Took you long enough")

main()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

4

While Loop
The while loop lets us repeat

operations. General form:

while condition:
 statement_1
 statement_2
 ...

1
2
3
4

As long as the condition is true, the
loop continues to run.

All statements in the loop body must

be indented the same amount.
5

Print out our punishment lines
def main():
 count = 500
 message = "I will not throw paper airplanes in class."
 i = 0
 while i < count:
 print(i, message)
 i += 1

main()

1
2
3
4
5
6
7
8
9

10

What if we forgot line 8?

6

Warm Up: Printing Squares

“ Take a number N from the user. Print all
perfect squares that are less than or equal to N.

A number is a perfect square if there is
an integer such that

N

Z Z =2 N

9, 16, 25, 36, etc.

7

Primality Testing
An integer is prime if it is greater than 1 and has no

integer divisors except 1 and itself.

To test whether an integer is prime, see
if any number in divides it

with no remainder.

n

[2, 3, ...,n− 1]

You cannot do this without loops without
knowing in advance. Why not?n

8

Primality Testing

Write a program which takes a number from the user
and decides whether it is prime or not.

An integer is prime if it is greater than 1 and has no integer divisors except 1 and itself.

To test whether an integer is prime, see if any number in

 divides it with no remainder.

n

[2, 3, ...,n− 1]

9

def main():
 x = int(input("Enter a number: "))

 is_prime = True
 divisor = 2
 while divisor < x:
 if x % divisor == 0:
 is_prime = False
 divisor += 1

 if is_prime:
 print(x, "is prime.")
 else:
 print(x, "is not prime.")

main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

10

Timing

Input Time (Desktop)
37 11.94 ms

176970203 7.03 s

479001599 18.91 s

479001600 19.01 s

This code works, but it's not fast.

11

Let's go faster!

We don't need to check all multiples of two! Why?
We don't need to go up to . What's the largest
number we need to go up to?

n− 1

What if we discover that the first factor divides the
number? Do we need to keep checking?

How can we speed this program up?

12

import math
def main():
 x = int(input("Enter a number: "))

 is_prime = x % 2 != 0
 divisor = 3
 limit = math.sqrt(x)
 while divisor < limit and is_prime:
 if x % divisor == 0:
 is_prime = False
 divisor += 2

 if is_prime:
 print(x, "is prime.")
 else:
 print(x, "is not prime.")

main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

13

Input Old Time New Time Speedup
37 11.94 ms 11.87 ms 1x

176970203 7.03 s 11.92 ms 587x
479001599 18.91 s 13.05 ms 1449x
479001600 19.01 s 11.91 ms 1596x

The new times suggest that the main contributor to timing
is printing the result.

Previously, with straight-line code, how long the program took
was basically limited by how much code we could write. Now,
with loops, we can make programs that take a very long time.

Computer scientist spend a lot of time trying to improve the
efficiency of algorithms.

14

int main() {
 int64_t num = 3318308475676071413;
 std::cin >> num;
 bool isPrime = true;
 if (num <= 2 || num % 2 == 0 || num % 3 == 0 || num % 5 == 0) {
 isPrime = false;
 }
 int wheel[8] = {7, 11, 13, 17, 19, 23, 29, 31};
 for (int i = 0; i < sqrt(num); i += 30) {
 for (int c : wheel) {
 if (c > sqrt(num))
 break;
 if (num % (c + i) == 0) {
 isPrime = false;
 break;
 }
 }
 if (!isPrime)
 break;
 }
 if (isPrime)
 std::cout << num << " is prime" << std::endl;
 else
 std::cout << num << " is not prime" << std::endl;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

With the right languages
and algorithms, you can get

very fast!

15

Timings
Test primality of 3318308475676071413

Python, version 1: Way too long

Python, version 2: 39.65 seconds

C++ w/ wheel factorization: 699 ms

By using the right tricks on the C++ version, I
could probably get another 8x-10x speedup.

Total speedup over Python version 1: over 9,000,000x!!
16

A Word of Warning

17

In This Class
As long as your code runs in reasonable time (under
1 minute) for the things it needs to do, I don't really

care about speed.

In General

Think carefully about why you need the program to
be fast, and measure it to figure out what needs to

be sped up.

18

Square Roots

19

Warm-up
Count even numbers from bot to top
top = int(input("Enter a top number:"))
bot = int(input("Enter a bottom number:"))

x = 0
while x <= top:
 if x % 2 == 0:
 print(x)
 x += 1
 elif x == top:
 print(x)
 print("And we're done!")
 else:
 x += 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14

20

Warmup: Calculate Approximate Minimum

Consider the following function:

Calculate the approximate minimum of

this function by stepping with a while-loop.

f(x) = x −2 27 ∗ x+ 10

21

Suppose I give you a number
. I want you to find a

number such that ,
or . How do you do

this?

x

y y =2 x

y = x

22

Worst Idea Ever
import random
import math

Approximate the square root of a positive
integer by random guessing
def main():
 x = int(input("Enter a number: "))

 while True:
 y = random.rand() * x
 if abs(y ** 2 - x) < 0.1:
 print(y, "is approximately the square root of", x)
 break

main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

We have no idea how long this will take!
23

Slightly Better Idea
import math

Approximate the square root of an integer very slowly
def main():
 num = int(input("Enter a positive integer: "))
 while num < 0:
 print("That wasn't positive.")
 num = int(input("Enter a positive integer: "))
 guess = 0.0
 while guess ** 2 < num:
 guess += 0.01
 print("The square root of", num, "is about", guess)

main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14

24

Note that the last guess isn't accurate! Foiled again by
the approximate nature of floating-point arithmetic.

How would you change the code to get
a better approximation? 25

feat: calculus!
Another Idea

Consider the following function:

f(x) = −x 10

When is it zero?

How can we find the zero?

26

f(x) = −x 10

What do we know about between these

two x-values?

f(0) = −10

f(26) = 4

f

27

Intermediate Value
Theorem

If is a continuous function on , then
for any , there exists

such that .

f [a, b]
s ∈ [f(a), f(b)] x ∈ [a, b]

f(x) = s

28

Root Finding: Bisection
Find such that and such that .

Then, continually narrow the interval so that the

condition remains true.

a f(a) < 0 b f(b) > 0

29

Write a program to find the square root
of a number by bisection.

30

For Loops

31

General form:

for var in sequence:
 statement_1
 statement_2

1
2
3

In a for-loop, you usually know how many
times you'll execute.

Meaning: for each element in
sequence, assign var to the
element and then execute

the statements.

Note: indentation must be
the same for all body stmts. 32

What's a Sequence?
A "sequence" is a general term for anything with

multiple items stored one after another.

a list is a sequence
seq = [2, 3, 5, 7, 11, 13]

The range() function is a good way to generate a sequence.

range(a,b): generates the sequence

range(b): is the same as range(0, b)
range(a,b,c): generates where is the

last value that is less than .

[a, a+ 1,… , b− 1]

[a, a+ c, a+ 2c,… , b]′ b′

b
33

34

Let's write a program to print
a table of the power of a given

base up to N.

e.g. 7 , 7 ,… , 71 2 N

35

Warmup
Write a program which computes the sum of the numbers from

1 to N. Do this with a for-loop.

(No need to use input() for this---just put an `N = 10` or
something at the top of your file).

36

While vs For

37

Nested Loops
The body of a loop can contain any kind of statement,

including other loops.

Let's write a program to print out BMI values for
heights between 54 and 82 inches (going up by 2

inches each time), and weights from 85 to 350
pounds (going up by 5 pounds).

It is arbitrary which loop the outer loop is.

38

break and continue

39

Sometimes we don't
always want to wait

until the end of a loop to
do something

40

break
break lets us exit a loop early

x = 0
while x < 10:
 x += 1
 if x == 7:
 break
 else:
 print("x is", x)

1
2
3
4
5
6
7

41

continue
continue lets us skip an iteration of the loop. Instead of exiting, we
immediately go to the top of the loop when we execute a continue

x = 0
while x < 10:
 x += 1
 if x % 2 == 1:
 continue
 print("x is", x)

1
2
3
4
5
6

42

In theory, you don't need break and continue
to write programs in Python!

In practice, it makes certain tasks a lot nicer.

43

Silly Encryption
Hide the true message inside a string by

putting in lots of 'q's and '2's.

If you see a '7', the message stops there
(everything else is designed to fool you).

“ qqh2eql22lqqo2q2
q2d2qqqa22q22rq22q2kq2qn2q222eq2q2s2q2q2s2q2q2

2q2q2qm2qyqqq qqoqlqqdqqqqqq
f2222rq2qqqi22qeqqqq2nqqq222d7i2aavea2a22222

a2q2q2q2q2q2
qqqs22222eqq22qqcqqq22qqrqq22qq2q2eqqqq2q22qt

44

f-strings

45

Mixing data with strings
So far, when we wanted to print data, we used the feature of

print that lets us print multiple things:

apples = int(input("How many apples"))
print("You have", apples, "apples.")

1
2

This works well enough, but sometimes
we'd like to have finer control over what

we're printing.

46

place = int(input("What place did the racer finish?"))
print("The racer finished in", place, "th place.")

1
2

Result:

“ The racer finished in 17 th place.

We want:

“ The racer finished in 17th place.

47

Enter f-strings
place = int(input("What place did the racer finish?"))
print(f"The racer finished in {place}th place.")

1
2

You place an f at the front of the string (before
the opening quotation marks).

Within the curly braces ({}) goes a Python

expression to evaluate. This can be python code!

num = int(input("Enter a number:"))
print(f"Twice {num} is {2 * num}")

1
2

48

You do not have to use them, but f-strings
make many things easier to print.

name = input("What is your name?")
print(f"{name.upper()} IS AWESOME!")

1
2

Just don't forget the f at the front!

print("The result is {3 * 7}")1

49

Practice!

50

Blastoff

Print a countdown from 20 to 1,
then print "BLASTOFF".

Make this program as short and

simple as possible.

51

Factorial

Use a for-loop to compute the factorial of
a number.

52

Harmonic Series
Print the first N partial sums of the harmonic

series.

53

Retirement

Suppose we invest $6000 a year into a
retirement account. How much does this money
grow over 30 years, assuming we have various

rates of return between 1% and 9%?

54

Coin Flipping

How many fair coin tosses do we need to
see 10 of the same side (either H or T) in a

row?

Repeat this experiment many times (e.g.
2500) and average over all the results.

55

