
Loops and Iteration

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin 1



Repetitive Activity
Sometimes, we need to do the same thing many times.
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So let's be a little clever about it!

Loops allow us to repeat things multiple times.

Note: we don't actually have to do the exact same
thing over and over---we can change it a little bit.

Computers can do billions of operations a second.
Loops are how we harness this power!
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def main():
  text = input("Please enter the number three: ")
  value = int(text)
  num_times_failed = 0
  while value != 3:
    text = input("That was not three! Please enter the number three: ")
    value = int(text)
    num_times_failed += 1
    
  if num_times_failed < 4:
   print("Thank you!")
  else:
    print("Took you long enough")
    
main()
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While Loop
The while loop lets us repeat

operations. General form:

while condition:
  statement_1
  statement_2
  ...
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As long as the condition is true, the
loop continues to run.

 
All statements in the loop body must

be indented the same amount.
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# Print out our punishment lines
def main():
  count = 500
  message = "I will not throw paper airplanes in class."
  i = 0
  while i < count:
    print(i, message)
    i += 1
    
main()
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What if we forgot line 8?
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Warm Up: Printing Squares

“  Take a number N from the user. Print all
perfect squares that are less than or equal to N.

A number  is a perfect square if there is
an integer  such that 

N

Z Z =2 N

9, 16, 25, 36, etc.
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Primality Testing
An integer is prime if it is greater than 1 and has no

integer divisors except 1 and itself.

To test whether an integer  is prime, see
if any number in  divides it

with no remainder.

n

[2, 3, ...,n− 1]

You cannot do this without loops without
knowing  in advance. Why not?n
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Primality Testing

Write a program which takes a number from the user
and decides whether it is prime or not.

An integer is prime if it is greater than 1 and has no integer divisors except 1 and itself.

To test whether an integer  is prime, see if any number in 

 divides it with no remainder.

n

[2, 3, ...,n− 1]
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def main():
    x = int(input("Enter a number: "))
    
    is_prime = True
    divisor = 2
    while divisor < x:
        if x % divisor == 0:
            is_prime = False
        divisor += 1
 
    if is_prime:
        print(x, "is prime.")
    else:
        print(x, "is not prime.")
 
main()
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Timing

Input Time (Desktop)
37 11.94 ms

176970203 7.03 s

479001599 18.91 s

479001600 19.01 s

This code works, but it's not fast.
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Let's go faster!

We don't need to check all multiples of two! Why?
We don't need to go up to . What's the largest
number we need to go up to?

n− 1

What if we discover that the first factor divides the
number? Do we need to keep checking?

How can we speed this program up?
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import math
def main():
    x = int(input("Enter a number: "))
    
    is_prime = x % 2 != 0
    divisor = 3
    limit = math.sqrt(x)
    while divisor < limit and is_prime:
        if x % divisor == 0:
            is_prime = False
        divisor += 2
 
    if is_prime:
        print(x, "is prime.")
    else:
        print(x, "is not prime.")
 
main()
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Input Old Time New Time Speedup
37 11.94 ms 11.87 ms 1x

176970203 7.03 s 11.92 ms 587x
479001599 18.91 s 13.05 ms 1449x
479001600 19.01 s 11.91 ms 1596x

The new times suggest that the main contributor to timing
is printing the result.

Previously, with straight-line code, how long the program took
was basically limited by how much code we could write. Now,
with loops, we can make programs that take a very long time.

Computer scientist spend a lot of time trying to improve the
efficiency of algorithms.
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int main() {
  int64_t num = 3318308475676071413;
  std::cin >> num;
  bool isPrime = true;
  if (num <= 2 || num % 2 == 0 || num % 3 == 0 || num % 5 == 0) {
    isPrime = false;
  }
  int wheel[8] = {7, 11, 13, 17, 19, 23, 29, 31};
  for (int i = 0; i < sqrt(num); i += 30) {
    for (int c : wheel) {
      if (c > sqrt(num))
        break;
      if (num % (c + i) == 0) {
        isPrime = false;
        break;
      }
    }
    if (!isPrime)
      break;
  }
  if (isPrime)
    std::cout << num << " is prime" << std::endl;
  else
    std::cout << num << " is not prime" << std::endl;
}
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With the right languages
and algorithms, you can get

very fast!
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Timings
Test primality of 3318308475676071413

Python, version 1: Way too long

Python, version 2: 39.65 seconds

C++ w/ wheel factorization: 699 ms

By using the right tricks on the C++ version, I
could probably get another 8x-10x speedup.

Total speedup over Python version 1: over 9,000,000x!!
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A Word of Warning
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In This Class
As long as your code runs in reasonable time (under
1 minute) for the things it needs to do, I don't really

care about speed.

In General

Think carefully about why you need the program to
be fast, and measure it to figure out what needs to

be sped up.
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Square Roots
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Warm-up
# Count even numbers from bot to top
top = int(input("Enter a top number:"))
bot = int(input("Enter a bottom number:"))
 
x = 0
while x <= top:
  if x % 2 == 0:
    print(x)
    x += 1
  elif x == top:
    print(x)
    print("And we're done!")
  else:
    x += 1
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Warmup: Calculate Approximate Minimum

Consider the following function:
 

 
Calculate the approximate minimum of

this function by stepping with a while-loop.

f(x) = x −2 27 ∗ x+ 10
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Suppose I give you a number
. I want you to find a

number  such that ,
or . How do you do

this?

x

y y =2 x

y = x
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Worst Idea Ever
import random
import math
 
# Approximate the square root of a positive 
# integer by random guessing
def main():
  x = int(input("Enter a number: "))
  
  while True:
    y = random.rand() * x
    if abs(y ** 2 - x) < 0.1:
      print(y, "is approximately the square root of", x)
      break
        
main()
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We have no idea how long this will take!
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Slightly Better Idea
import math
 
# Approximate the square root of an integer very slowly
def main():
  num = int(input("Enter a positive integer: "))
  while num < 0:
    print("That wasn't positive.")
    num = int(input("Enter a positive integer: "))
  guess = 0.0
  while guess ** 2 < num:
    guess += 0.01
  print("The square root of", num, "is about", guess)
 
main()
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Note that the last guess isn't accurate! Foiled again by
the approximate nature of floating-point arithmetic.

How would you change the code to get
a better approximation? 25



feat: calculus!
Another Idea

Consider the following function:

f(x) = −x 10

When is it zero?

How can we find the zero?
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f(x) = −x 10

 
What do we know about  between these

two x-values?

f(0) = −10

f(26) = 4

f
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Intermediate Value
Theorem

If  is a continuous function on , then
for any , there exists 

such that .

f [a, b]
s ∈ [f(a), f(b)] x ∈ [a, b]

f(x) = s
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Root Finding: Bisection
Find  such that  and  such that .

 
Then, continually narrow the interval so that the

condition remains true.

a f(a) < 0 b f(b) > 0
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Write a program to find the square root
of a number by bisection.
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For Loops
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General form:

for var in sequence:
  statement_1
  statement_2

1
2
3

In a for-loop, you usually know how many
times you'll execute.

Meaning: for each element in
sequence, assign var to the
element and then execute

the statements.
 

Note: indentation must be
the same for all body stmts. 32



What's a Sequence?
A "sequence" is a general term for anything with

multiple items stored one after another.

# a list is a sequence 
seq = [2, 3, 5, 7, 11, 13] 

The range() function is a good way to generate a sequence.
 

range(a,b): generates the sequence 

range(b): is the same as range(0, b)
range(a,b,c): generates  where  is the

last value that is less than .

[a, a+ 1,… , b− 1]

[a, a+ c, a+ 2c,… , b ]′ b′

b
33
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Let's write a program to print
a table of the power of a given

base up to N.

e.g. 7 , 7 ,… , 71 2 N
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Warmup
Write a program which computes the sum of the numbers from

1 to N. Do this with a for-loop.
 

(No need to use input() for this---just put an `N = 10` or
something at the top of your file).
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While vs For
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Nested Loops
The body of a loop can contain any kind of statement,

including other loops.

Let's write a program to print out BMI values for
heights between 54 and 82 inches (going up by 2

inches each time), and weights from 85 to 350
pounds (going up by 5 pounds).

 
It is arbitrary which loop the outer loop is.
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break and continue
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Sometimes we don't
always want to wait

until the end of a loop to
do something
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break
break lets us exit a loop early

x = 0
while x < 10:
  x += 1
  if x == 7:
    break
  else:
    print("x is", x)
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continue
continue lets us skip an iteration of the loop. Instead of exiting, we
immediately go to the top of the loop when we execute a continue

x = 0
while x < 10:
  x += 1
  if x % 2 == 1:
    continue
  print("x is", x)
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In theory, you don't need break and continue
to write programs in Python!

 
In practice, it makes certain tasks a lot nicer.
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Silly Encryption
Hide the true message inside a string by

putting in lots of 'q's and '2's.
 

If you see a '7', the message stops there
(everything else is designed to fool you).

“  qqh2eql22lqqo2q2
q2d2qqqa22q22rq22q2kq2qn2q222eq2q2s2q2q2s2q2q2

2q2q2qm2qyqqq qqoqlqqdqqqqqq
f2222rq2qqqi22qeqqqq2nqqq222d7i2aavea2a22222

a2q2q2q2q2q2
qqqs22222eqq22qqcqqq22qqrqq22qq2q2eqqqq2q22qt
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f-strings
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Mixing data with strings
So far, when we wanted to print data, we used the feature of

print that lets us print multiple things:

apples = int(input("How many apples"))
print("You have", apples, "apples.")

1
2

This works well enough, but sometimes
we'd like to have finer control over what

we're printing.
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place = int(input("What place did the racer finish?"))
print("The racer finished in", place, "th place.")
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2

Result:

“  The racer finished in 17 th place.

We want:

“  The racer finished in 17th place.
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Enter f-strings
place = int(input("What place did the racer finish?"))
print(f"The racer finished in {place}th place.")
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You place an f at the front of the string (before
the opening quotation marks).

 
Within the curly braces ({}) goes a Python

expression to evaluate. This can be python code!

num = int(input("Enter a number:"))
print(f"Twice {num} is {2 * num}")

1
2
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You  do not have to use them, but f-strings
make many things easier to print.

name = input("What is your name?")
print(f"{name.upper()} IS AWESOME!")
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Just don't forget the f at the front!

print("The result is {3 * 7}")1
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Practice!

50



Blastoff

Print a countdown from 20 to 1,
then print "BLASTOFF".

 
Make this program as short and

simple as possible.
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Factorial

Use a for-loop to compute the factorial of
a number.
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Harmonic Series
Print the first N partial sums of the harmonic

series.
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Retirement

Suppose we invest $6000 a year into a
retirement account. How much does this money
grow over 30 years, assuming we have various

rates of return between 1% and 9%?
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Coin Flipping

How many fair coin tosses do we need to
see 10 of the same side (either H or T) in a

row?
 

Repeat this experiment many times (e.g.
2500) and average over all the results.
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