
Simple Python

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin 1

print("Hello World!")
print("My name is Cheese!")

1
2

What does this code do?

Let's find out!

2

Statements
Code in Python consists of statements, one per line.

We can enter these lines one at a time at the
interactive python prompt (sometimes called the

REPL), or we can put the lines into a file and run them
by typing `python <file_name>`.

3

What does this code do?

print("Hello World!")
print("My name is Cheese!")
x = 7
print("I am")
print(x)
print("years old!")

1
2
3
4
5
6

4

What does this code do?

x = 28.5
y = -27
z = x * y - 2
print(z)

1
2
3
4

5

Assignment Statements
An assignment in python looks like this:

variable = <value>
We say that the variable is assigned value, or that
after the assignment, variable "contains" value.

This DOES NOT check to see if the two values are
equal, it causes an action!

In a more sane universe, we'd use syntax like x ← 17,
but unfortunately decisions made in the 1960s and

1970s have almost locked us into using =. 6

What is a variable?

Variables on a computer are stored in memory.
Memory is divided into bytes. Each byte is given
an address or location.
A variable is a name given to a spot in memory.
For reasons we don't want to talk about, the
rules for what memory location is chosen in
Python are a little complex.

x = 27
Let's assume that x is placed
at memory location 12345676

1
2
3

12345673

12345674

12345675

12345676

12345677

12345678

x 27

7

You can create a new
variable in Python by
assigning it to a value.

x = 3 # creates x
print(x)

x = "abc" # Re-assigns x
print(x)

x = 3.14 # Re-assigns x again
print(x)

y = 6 # Creates y
x * y

1
2
3
4
5
6
7
8
9
10
11

Other languages require
you to declare the

variable first. You do not
have to do this in Python!

Python

let x = 7; // Okay!

y = 5; // Not okay!

1
2
3

Rust

8

x = 17
y = x + 3
z = w

1
2
3

Defines and initializes x

Defines and initializes y

Error!

This code defines three variables: x, y, and z. On the
left hand side (LHS), the variable is created if it
doesn't already exist.

On the right hand side (RHS) is an expression. When
the assignment statement is run, the expression on
the right is evaluated and the result is assigned (or
bound) to the variable on the left.

9

Rules About Variables Names

Variable names have to begin with a
letter or an underscore (_)
After that, use any number of letters,
underscores, or digits
Case matters: "helpme" is different
from "helpMe"
You can't use reserved words

10

Python Reserved Words (a.k.a. Keywords)

These are words which have special meaning to
Python. You cannot use them as variable names.

“ False, None, True, and, as, assert, async, await, break,
class, continue, def, del, elif, else, except, finally, for, from,
global, if, import, in, is, lambda, nonlocal, not, or, pass,

raise, return, try, while, with, yield

Most IDEs will display these
keywords in a different color to

help you recognize them.

11

Built-ins
Python also has built-in functions. These are not

reserved, but you usually don't want to override them.

12

PyCharm will warn you if you try to do this (the green
squiggle underline indicates a warning)

13

Python 2 Booleans

14

Let's Play a Game!

___ = 10
_123 = 11
ab_cd = 12
ab|cd = 13
assert = 14
maxValue = 100
print = 8

1
2
3
4
5
6
7

1. Legal (but kinda weird)

2. Legal (also kinda weird)

3. Fine

4. Illegal character

5. assert is reserved

6. Great

7. legal, but a bad idea

Illegal or not?

15

Let's do an A/B Test!

num_potatoes = 1000
weight_per_potato = 0.3
total_weight = num_potatoes * weight_per_potato
truck_capacity = 50
num_trucks_needed = total_weight / truck_capacity
print(max_truck_capacity)

1
2
3
4
5
6

aAaAaAaA = 1000
AaAaAaAa = 0.3
AAAAAAAA = aAaAaAaA * AaAaAaAa
BBBBBBBB = 50
bbbbbbbb = AAAAAAAA / BBBBBBBB
print(bbbbbbbb)

1
2
3
4
5
6

16

Naming Variables
Variable names should begin with a lowercase
letter
Choose meaningful names that describe how the
variable is used.

Use num_columns instead of n
Use underscores to separate multiple words
Use short names for loop variables

17

Types

18

How many ducks are in this
picture? 19

How many ducks are in this
picture?

Answer: Three.

Followup question that demonstrates that I might have
a screw loose: are you sure it isn't 2.8?

20

How much do the onions weigh?

0

1

2

34

Three pounds? Maybe it's 2.8?

21

0

1

2

34

Why is "maybe it's 2.8 ducks?" a weird
question, but "maybe it's 2.8 pounds?"

a normal question?
22

Data Types
A data type is a way to categorize values.

Whenever we assign values to variables, we also implicitly

assign a type.

x = 3 # creates x and assigns an int
print(x)

x = "abc" # Re-assigns x, changes to string
print(x)

x = 3.14 # Re-assigns x again, changes to float
print(x)

y = 6 # Creates y, assigns an int
x * y

1
2
3
4
5
6
7
8
9
10
11

23

Data Type Description Example
int Integer. A counting number

of unlimited value.
42

float A real number. 3.1415926

str A sequence of characters.
Usually used to model text.

"Hello world"

bool A truth value (True or False) True, False

tuple Immutable sequence of
mixed types

(4.0, True)

list Mutable sequence of mixed
types

[1,2,3,4,5]

set Collection without duplicates

dict A map from keys onto values {'a': 3, 'b': 4}

Lots more that we won't see: complex, bytes, frozenset 24

'class' is another name
for data type

The data type is a
categorization: what kind
of a thing is the value that
this variable refers to?

25

Other Languages
Other languages require you to state the type of a
variable the first time you mention it, and the type

can't change afterwards.

int main(){
 float x = 5.0; // x is forever a float
 x = 7; // Okay! 7 is converted to 7.0
 x = "whee"; // Illegal! Trying to change type of x
}

1
2
3
4
5 C++

This sometimes leads people to say that
Python "doesn't have types". But that isn't

really true.

26

Three Common Types
int

float

str

All these types are immutable.

signed integers (whole numbers)

Computations are exact and of unlimited size
Examples: 4, -17, 0, 10000000000000000

signed real numbers (with decimal points)

Large range, but fixed. Computations are approximate
Examples: 3.2, -9.0, 3e23

represents text

We use this for input and output
Examples: "Hello world!"

27

Mutability?

28

Didn't we just change x?

29

The id of x (similar to its address)
have changed.

What we really did was change

what x referred to!

30

x = 37

x = x + 10
x = 37 + 10

x = 47

x 37

x 37

31

47

An immutable object is one that cannot be changed by
the programmer after you create it.

A mutable object is one that can be changed.

32

An immutable object is one that cannot be changed by
the programmer after you create it.
This means there is usually only one copy in memory!
When the system encounters a new reference, it creates a
pointer to the already-stored value.
There is only one 17 in memory. There is only one "abc" in
memory.
If you do something to the object that looks like you're
changing it, you're actually creating a new object.

33

x and y are both 17, so both point to the
unique object 17 in memory.

Surprise! s1 and s2 are the same string!

But since s3 is a different string than s1 or
s2, it actually is a new string

Creates a new string? (spoiler: it doesn't)
Creates a new string

34

How is Data Stored?

35

All data on a computer is stores as a
series of bits (0s and 1s) in the

computer's memory.

Yes, everything.

36

This image is 0s and 1s.

Word documents are 0s
and 1s.

This presentation is
stored as 0s and 1s.

The python programs you write are 0s and 1s. When you
run them, they're converted to a different set of 0s and 1s.

A key problem when designing computing systems is
how to represent the data as a sequence of bits.

37

Digital Images
Digital images can be stored in any of the following formats

(not an exhaustive list!):

JPEG: Joint Photographic Experts Group
PNG: Portable Network Graphics
GIF: Graphics Interchange Format
TIFF: Tagged Image File
PDF: Portable Document Format
EPS: Encapsulated Postscript
HEIF: High Efficiently Image Format

Each format has its own rules for how sequences of 0s and 1s
should be interpreted as images.

Fortunately for us, we usually don't have to know how the
data is stored in memory.

38

Data Storage

729484

729485

729486

729487

729488

729489

01001000

01001100

01001000

01001100

01000101

01001111

00100000

...

Memory can be thought of as a big array of bytes, where
a byte is a sequence of 8 bits. Each byte has an address

and contents.

ASCII encoding for 'H'
ASCII encoding for 'E'
ASCII encoding for 'L'

ASCII encoding for 'L'

ASCII encoding for 'O'

39

Example: ASCII Text

The standard way of encoding English text in memory is
ASCII. It defines 128 characters using a numeric equivalent

for each character.

Some of the characters are non-printable.
40

Characters or small numbers can be stored in one byte. If
data can't be stored in a single byte, it has to be split across

a number of adjacent bytes.

The way data is encoded in bytes varies. It can depend on:

The data type being used
The operating system being used
The specific type of computer being used
Settings that are set in the computer when it is first
powering on

This is messy! Fortunately, we don't need to worry about it
most of the time! Python will take care of most of it for us.

But we do need to know that these data types are
stored differently!

41

It would be nice to look at the string "25" and do math with it.

But the number 25 (the integer number) is
represented by 00011001.

And the string "25" is represented as
00110010 00110101.

And the number 25.0 (the floating point
number) is represented as 01000001

11001000 0000000 000000000

So we can't do math on "25" directly.

42

Fortunately, Python gives us functions that
let us convert between the forms!

43

Arithmetic

Name Meaning Example Result
+ Addition 34 + 1 35

- Subtraction 34.0 - 0.1 33.9

* Multiplication 300 * 30 9000

/ Float Division 1 / 2 0.5

// Floor Division 1 // 2 0

** Exponentiation 4 ** 0.5 2.0

% Remainder 20 % 3 2

This last operation is often referred to as "x mod y"
44

Integer Division

Floor division specified with //
operator.

This goes to the floor on a number
line, and discards the remainder.

45

Modulo Operator

x % y evaluates to the remainder of x // y

46

Enough Talking. Let's
write a program!

47

BMI Calculator
Body Mass Index is a quick calculation based on height and weight

used by medical professionals to broadly categorize people.

BMI = =heightm
2

masskg ×heightin
2

masslb 703

Let's write a program to calculate BMI for a
given height and mass.

48

Getting Input
To get information from the user, call built-in

function input()

Just like we can send information to print, we can
get information from input(). Input can take an

argument which will be something that is displayed
to the user.

Let's try modifying our program to use this new

function!

49

Errors
There are three types of errors in Python:

Syntax Error
Runtime Error
Logic Error

The language will catch the first two for
you and (usually) print a message.

50

Augmented Assignment
Python, like C, C++, Java, and many other languages,

provides shorthand syntax for some common assignments.

Shorthand Form Equivalent Code
i += j i = i + j

i -= j i = i - j

i *= j i = i * j

i /= j i = i / j

i //= j i = i // j

i %= j i = i % j

i **= j i = i ** j

51

Mixed Type Arithmetic
Most arithmetic operations behave as you

would expect when mixing numeric data types.

52

Special Assignment

Simultaneous assignments

m, n = 2, 3

m = 2
n = 3

means

Except both assignments
happen at the same time

Multiple assignments

a = b = c = 7

means

c = 7
b = c
a = b

Note these happen
right-to-left

53

What does this do?

x, y = y, x

54

