
Tuples and Strings

adapted from material by Mike Scott and Bill

Young at the University of Texas at Austin

but mostly strings

1

Tuples

2

Like a list, a tuple is a sequence. Unlike a list, it is immutable.

Once you have created it, you cannot change it.

tup = (1, 2, 3, "a") # Can be heterogeneous, just like lists
print(tup[2]) # Can be indexed
print(tup[1:3]) # Can be sliced
tup[2] = 4 # TypeError

1
2
3
4

3

A tuple is like an immutable list. Which of the
following operations do we think tuples support?

index
append
slicing
len
max
remove
+
insert
*
comparison
reverse
sort
in
indexassign

4

Destructuring

a, b = 3, 5

tup = (1, 3, 5, 7)
(a, b, c, d) = tup
print(a)
print(b)
print(c)
print(d)

1
2
3
4
5
6

Remember that we have multiple
assignment syntax in Python

We can do a similar thing to destructure
tuples:

5

Tuples vs Lists
Tuples can be a little faster than lists (though
you should never make this your primary
reason for choosing them)
Tuples can be safer if available

lst = [1,3,5]
tup = (1,3,5)
mystery_function(lst)
mystery_function(tup)

1
2
3
4

What is the value of lst, tup, after the
function calls?

6

(More about) Strings

7

Strings are sequences!
Many of the things we learned about

sequences will apply.

mystring = "Hello!"

for ch in mystring:
 print(ch)

print(ch[3])
print(ch[-2])

1
2
3
4
5
6
7

8

We even get the same errors!

9

Concatenation
Strings can be joined together with the +

operator. We can even do += like with numbers.

name = input("What is your name? ")
print("Hello " + name)
output = "My user is "
output += name

Remember that a += x expands to a = a + x
print(output)

1
2
3
4
5
6
7

10

Strings are Immutable
Like tuples, once strings have been created, they

cannot be changed.

When it looks like we're modifying a string,
we're actually creating a new string (as can

be seen here, by the id of s1 changing).

s1 = "Hello!"
s1[5] = "?" # Allowed?

1
2

11

One thing to note
In some languages, the individual pieces of a string are a

different type (usually known as a "char" or a "byte").

In Python, this is not the case. The smallest
piece of a string is still a string.

12

String Methods
These methods are used to check if certain properties of the

string are true.
Fun fact: these are sometimes known as "predicates" in computer

science. It's simply a function that returns True or False.

Method Description
isalnum() Does string only contain alphabetical/numerical?

isalpha() Does string only contain alphabetical characters?

isdigit() Does string only contain numeric digits?

islower() Does string consist only of lowercase characters?

isspace() Does string consist only of whitespace?

isupper() Does string consist only of uppercase characters?
13

Let's Write a Program
Ask the user to enter a number, then keep

bothering them until they actually enter a number.

(Don't use try-except)

14

Storytime!
One of my relatives lives in the ZIP code 03755.

When I tried to enter this into the form, it told me this was
an invalid ZIP code.

15

Let's Write a Program

Validate a ZIP code correctly.

16

These methods appear to modify the string

Method Description
lower() Convert the string to all lowercase.

upper() Convert the string to all uppercase.

lstrip(ch) Remove all occurrences of ch from the start
of the string (the "left" side of the string)

rstrip(ch) Remove all occurrences of ch from the end of
the string (the "right" side of the string)

strip(ch) Remove all occurrences of ch from both ends
of the string.

If an argument is not provided for any of the
strip methods, Python will strip all whitespace.

17

BE CAREFUL WITH STRING MANIPULATIONS!

def get_player_names():
 return ["Anton EgO", "Alfredo Linguini ", "Remy "]

def player_is_registered(name):
 return name in get_player_names()

def main():
 name = input("What is your player name? ")
 if player_is_registered(name):
 print("Welcome " + name)
 else:
 print(f"I do not see {name} in my records.")

main()

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Smart move: use lower() or upper() to make sure
everything is same-cased, and use isalnum() to make

sure a string is what you expect.
18

Search and Splitting

19

Searching
Sometimes we want to find substrings in a string, or to

figure out where those substrings are located.

If you want to check if a string starts or ends
with a substring, use startswith() or endswith()

function is_a_doctor(full_name):
 return full_name.startswith("Dr. ")

1
2

If you want to know where the match occurs,
use find(), which returns the index of the start of

the match (or -1 if no match is found).

20

Splitting
Calling s.split(ch) will split a string into multiple

strings on the specified character. If no argument
is provided, it will split on whitespace.

Makes CSV Processing a lot easier!

21

Write a function which
returns a 2D List of strings

corresponding to the
reading of a CSV

22

