
BASICS OF MACHINE
LEARNING

1

Quick note:

This is not a talk on how to build a machine
learning program to do task X.

If you want to do this, there are a million
tutorials on the internet.

TODAY, I'M GOING TO TRY TO GIVE YOU A DEEPER
UNDERSTANDING OF MACHINE LEARNING: WHY IT

EVEN WORKS, AND HOW IT RELATES TO OTHER
PROGRAMMING WE'VE DONE.

I'll be teaching today with the ultimate goal of
getting to a deep neural network, but the

principles are very similar for a large number of
machine learning tools.

2

WHAT IS MACHINE
LEARNING?

3

WHAT IS MACHINE LEARNING?

“ Machine learning (ML) is a field of inquiry devoted to
understanding and building methods that 'learn', that is, methods
that leverage data to improve performance on some set of tasks

Wikipedia

4

CLASSIC PROGRAMMING

Completely specify what the computer should do.

Write code that tells the computer what
operations to carry out.

def my_function(x):
 return 2 * x + 1

1
2

5

MACHINE LEARNING

Partially specify what the computer should do.

Write code that tells the computer mostly what
it should do, but leave a few values ambiguous.

def my_function(x):
 return a * x + b

1
2

Use examples to teach the computer what the
parameters should be.

6

MACHINE LEARNING IS NOT
SOME MAGICAL WAY TO MAKE
COMPUTERS DO THINGS THEY

COULDN'T BEFORE!

The computer is still executing a function! Instead of
specifying what the function is 100%, we're going to feed
the computer examples and adjust the function based on

those examples!
7

FUNCTIONS????????

8

COMMON MACHINE LEARNING TASKS

These are functions??? 9

EXAMPLE: SEMANTIC SEGMENTATION

What type of data is a grayscale (black & white) image?

Image Credit: https://www.analyticsvidhya.com/blog/2021/03/grayscale-and-rgb-format-for-storing-images/

What would a function look like to
determine if a given pixel is part of the

stroke or part of the background?

def is_background(image, i, j):
 if image[i][j] > 5:
 return True
 else:
 return False

1
2
3
4
5

10

def semantic_segments(image):
 for i in range(len(image)):
 for j in range(len(image)):
 semantic_category(image, i, j)

1
2
3
4

EXAMPLE: SEMANTIC SEGMENTATION
def semantic_category(image, i, j):
 # Do some analysis work
 #
 #
 if is_car(analysis_result):
 return 1
 elif is_bus(analysis_result):
 return 2
 # etc. etc.

1
2
3
4
5
6
7
8
9

11

HOW DO WE ADJUST
THE PARAMETERS?

12

def my_function(x):
 return a * x + b

1
2

THESE PARAMETERS DON'T SET THEMSELVES!

First, we need a list of examples:

2, 5
7, 15
-3, -5
0, 1
100, 201

13

def my_function(x):
 return a * x + b

1
2

Let's start by guessing values for a, b. Maybe we'll say they start at a = 0
and b = 5.

Example Input Example Output Our Output

2 5 5

5 11 5

100 201 5

-3 -5 5

Well....that's not very good.

14

def my_function(x):
 return a * x + b

1
2

What if we tried a = 0, b = 100?

Example Input Example Output Our Output

2 5 100

5 11 100

100 201 100

-3 -5 100

Well....that's not very good either.

15

Example Input Example Output Our Output

2 5 5

5 11 5

100 201 5

-3 -5 5

Example Input Example Output Our Output

2 5 100

5 11 100

100 201 100

-3 -5 100

WHICH IS WORSE?

16

QUANTIFYING ERROR
We need some way to assign a number to the intuitive idea

of "how bad the error is."

def mse(true_out, our_out):
 loss = 0
 for i in range(len(true_out)):
 loss += (true_out - our_out) ** 2

1
2
3
4

These are known as loss functions. If you go into
ML, you'll hear about a lot of these things:

MSE Loss
MAE Loss
Cross-Entropy Loss
etc. etc. etc.

mse(x ,x) =t f (x −∑i=1
N

t x)f 2

17

THE STORY SO FAR
def my_function(x):
 return a * x + b

1
2

PARTIALLY
COMPLETE
FUNCTION

Example
Input

Example
Output

Our
Output

2 5 5

5 11 5

100 201 5

-3 -5 5

LIST OF EXAMPLES

mse(x ,x) =t f (x −∑i=1
N

t x)f 2
LOSS FUNCTION

18

THE DESCENT

19

def my_function(x):
 return a * x + b

1
2

We tried a = 0, b = 5. These were our results.

Example Input Example Output Our Output

2 5 5

5 11 5

100 201 5

-3 -5 5

If we increased a, would the results be better or worse?

MSE Loss = 38552

20

def my_function(x):
 return a * x + b

1
2

a = 0.1, b = 5

Example Input Example Output Our Output

2 5 5.2

5 11 5.5

100 201 55

-3 -5 4.7

LOSS IS 30% LOWER!

MSE Loss = 21440.38

21

We could just keep trying this!

Try changing a or b a small amount, see how
the loss changes.
If the loss decreases, keep the change.
If the loss increases, revert the change.
Keep going until you can't decrease the loss
anymore.

But real models don't have 2 parameters, they have 3 million.

To actually try this for 3 million parameters (and then actually
have to change things) is too slow.

22

Instead, rely on another observation: for our given examples, we
can compute the loss exactly based off of a and b.

For given examples, the loss is a function of a and b!

def compute_loss(inputs, outputs, a, b):
 loss = 0
 for i in range(len(inputs)):
 our_output = a * inputs[i] + b
 true_output = outputs[i]
 loss += (our_output - true_output) ** 2
 return loss

1
2
3
4
5
6
7

IF I CHANGE A AND B A LITTLE BIT, DOES
THE LOSS CHANGE A LITTLE OR A LOT?

23

KEY INSIGHT: LOSS IS
DIFFERENTIABLE

24

IN 1D: DERIVATIVE TELLS US HOW MUCH
THE FUNCTION CHANGES LOCALLY

IN 2D+: DERIVATIVE TELLS US HOW MUCH THE
FUNCTION CHANGES LOCALLY AND WHICH

DIRECTION IT CHANGES THE FASTEST

25

TO DECREASE LOSS, WE CAN FOLLOW THE GRADIENT!

Example: We tried a = 0, b = 5.

The (negative) gradient of the function at these values is
(39320, 384), so we would increase both a and b.

Keep doing this, and eventually we'll arrive at the
correct values for a and b.

26

MACHINE LEARNING, OVERALL SETUP

1. Define a function we want to compute, with some parameters
that affect the function's output.

2. Get examples of the function we want to compute
3. Define a loss function, which defines how much our function

didn't match the examples
4. Compute the gradient the loss with respect to the parameters.
5. Update the parameters according to the gradient.
6. Repeat until the function does more-or-less what we want.

27

NEURAL NETWORKS
AND DEEP LEARNING

28

IN THE 2000S, PEOPLE REALIZED THAT THE
FOLLOWING OPERATION MAKES FOR A PRETTY

GOOD BASIC UNIT FOR A MACHINE LEARNER

y = relu(Wx+ b)

Where x is an input vector, W is a weight matrix,
b is a bias vector, y is the output, and relu is a

ReLU operation.

29

y = relu(Wx+ b)

Chain these units together to make a
deep neural network!

30

HOW MANY PARAMETERS?

N +2 N PER-LAYER

In large neural networks, this adds up to millions of
parameters to learn!

This is very expensive to train.

31

Use specialized hardware to train these learners!

GPUs are very good at doing the kinds of
calculations that neural nets need for training.

32

CONCEPT DEMO

https://www.tensorflow.org/tutorials/quickstart
/beginner

33

CONTINUING PROGRAMMING

34

This course has covered the most basic
principles of programming.

If you want to keep learning, you have lots of options:

Take an intro to programming course at your college.
These will cover lots of similar subjects to what we did in
this class, but they will also touch on some different
things.
Take a data structures course. These have a million
different names, but they are almost always the course
right after the introductory programming course.
Online options like https://exercism.org/

35

GENERAL ADVICE
When focusing on jobs or abilities, people always focus on

languages and libraries (e.g. MATLAB, R, Flutter, React, etc.)

"Need someone with N years of Python", "Experienced in
Angular", etc. etc.

If you want to work as a software developer, this is important.

IF YOU JUST WANT TO BE ABLE TO WRITE
PROGRAMS, WORRY ABOUT WRITING PROGRAMS

FIRST! WORRY ABOUT LANGUAGES LATER.

36

