
Shapes + Interpolation

1

Transformations
Calls in Processing that allow us to move the coordinate
system around---changes the interpretation of positions.

Useful transformations:

translate
rotate
shearX
shearY
scale

2

Recalling Transformations
Sometimes we might want to save the current

transformation: can do with with pushMatrix()

The most recent transformation saved with
pushMatrix() can be restored by calling popMatrix()

We should generally try to make sure every
pushMatrix() is matched with a popMatrix()

3

Questions

4

Is there a way to iterate over the transformations
stored by pushMatrix()?

Not without accessing the Necronomicon.
(The transformation stack is a Processing internal, meaning you

have to write some custom Java code to get to it).

Can we create our own custom transformations?

See applyMatrix() and resetMatrix().

5

How do we know which transformations to apply first?

Try it and see.

There are mathematically backed ways of doing this, but
in practice, you do it enough times that you get an

intuition for how it works.

Do you have to use linear algebra to do these transforms?

In Processing, no. The transformation
functions we studied basically do all the

transforms you need to worry about.

6

How are successive transformations represented?

=[a1
c1

b1
d1

] ([a2
c2

b2
d2

] [x
y

]) ([a1
c1

b1
d1

] [a2
c2

b2
d2

]) [x
y

]

=

Matrix Multiplication!

[x
y

][a3
c3

b3
d3

]

7

Are there any other uses for matrices in graphics
programming aside from linear transforms?

Meshes can be represented as matrices.
Lights can be represented as matrices.

Physics operations can be represented as matrices.

The world of graphics floats on matrices.
In this class, we will mostly be able to dodge them, since

Processing handles a lot of stuff for us.

8

With all the stuff we've learned, could we make a simple game?
After today's class, you could probably feasibly write the

following retro games:

Snake Pong

Frogger

Space Invaders

...and possibly Pac-Man or Tetris?Breakout 9

Thinking About Transforms

10

Another Way of thinking of Transforms

World Coordinate System

Camera Coordinate
System

11

Object Coordinate
System

Transforms modify the current
coordinate system!

Screen Coordinates "Object Coordinates"

translate(100, 100);

12

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

13

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

pushMatrix();

14

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

pushMatrix();
rotate(PI/4);

15

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

pushMatrix();
rotate(PI/4);

translate(100, 0);

x

y

16

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

pushMatrix();
rotate(PI/4);

translate(100, 0);
rect(0, 0, 50, 100);

x

y

17

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

pushMatrix();
rotate(PI/4);

translate(100, 0);
rect(0, 0, 50, 100);

popMatrix();

x

y

18

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

pushMatrix();
rotate(PI/4);

translate(100, 0);
rect(0, 0, 50, 100);

popMatrix();
rect(100, 0, 100, 50);

19

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

pushMatrix();
rotate(PI/4);

translate(100, 0);
rect(0, 0, 50, 100);

popMatrix();
rect(100, 0, 100, 50);

20

Screen Coordinates "Object Coordinates"

translate(100, 100);
rect(0, 0, 50, 50);

pushMatrix();
rotate(PI/4);

translate(100, 0);
rect(0, 0, 50, 100);

popMatrix();
rect(100, 0, 100, 50);

21

Demo: Bike and Car

22

23

How to draw the individual pieces?

24

Creating Shapes from Vertices
1. Use beginShape() to start the shape
2. Specify points defining the shape with vertex()
3. Complete the shape with endShape()

fill(), stroke(), noFill(), noStroke() and
strokeWeight() control the shape attributes

endShape() ends the shape

endShape(CLOSE) ends the shape and closes it by
drawing a line back to the starting point

25

Example

beginShape();
vertex(30, 20);
vertex(85, 20);
vertex(85, 75);
vertex(30, 75);
endShape();

1
2
3
4
5
6

endShape(CLOSE) would add a line connecting back to the first vertex
26

Geometry
beginShape() accepts different parameters to define the drawing of vertex data

POINTS
LINES
TRIANGLES
TRIANGLE_STRIP
TRIANGLE_FAN
QUADS
QUAD_STRIP

27

28

Curves

If there is no parameter passed to beginShape(), we can also draw curves
using special vertex functions.

curveVertex() draws curves which are defined by a first control point,
intermediate points, and a second control point.

bezierVertex() is defined by an initial anchor point, then triples of
(control, control, anchor) points.

29

30

Contours
We can also cut holes into shapes via contours.

Call beginContour() and endContour() inside of a
beginShape()/endShape() block

31

Defining Shapes with Vertices
...is really hard.

Even harder in 3D. Quick, what are the
points needed for an approximate sphere?

Solution: don't. Design shapes using graphical
interfaces (like Illustrator or Maya) and then

import them!

32

PShape
A class for storing Shapes

Allows us to load and display SVGs and OBJs
SVG is an open standard for storing 2D vector graphics
OBJ is a standard for storing 3D vector geometry

Call loadShape(filename) to load a file into a PShape

shape(PShape, x, y) or shape(PShape, x, y,
width, height) to display it

Pretty similar to PImages!
33

Example SVG
 <g
 inkscape:label="Layer 1"
 inkscape:groupmode="layer"
 id="layer1">
 <rect
 style="fill:#0000ff;stroke:#00000
 id="rect234"
 width="76.99118"
 height="77.594948"
 x="17.603966"
 y="36.327324" />
 <ellipse
 style="fill:#ff6600;stroke:#00000
 id="path498"
 cx="89.078629"
 cy="126.6972"
 rx="34.270332"
 ry="63.077023" />
 </g>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

34

Aside: Vector vs Raster Images

We saw that images are grids of pixels,
where each pixel has a color.

These are more specifically
known as raster images.

Formats like SVG are known as vector
images (or vector graphics).

https://www.simplyprint.net/raster-versus-vector/

35

Grouping PShapes
We can also group multiple PShapes to make a more complex shape.

PShape person = createShape(GROUP);
PShape head = createShape(ELLIPSE, 25, 25,50, 50);
PShape body = createShape(RECT, 0, 50, 50,100);
person.addChild(head);
person.addChild(body);
shape(person);

1
2
3
4
5
6

36

Hands-On: Using PShapes

1. Create a free-hand shape using vertex() points
2. Create a Shape using curveVertex()
3. Load an SVG from https://www.svgrepo.com/ into a PShape and display it

to the screen.

Remember, most of these will need to be sandwiched
inside beginCurve() and endCurve()

37

Animating a Scene
So far, we've focused on how to construct static images. Static

images are so 15,000 B.C.E. Let's make moving pictures!

One way to make an animation would be to
define a sequence of static images that form

the final animation.

Static images constructed with 15,000
B.C.E. technology.

38

Tweening
"In-betweening"
Used in both traditional and digital animation
Define distinct keyframes and automatically create
intermediates derived from them or interpolate
between keyframes

Chu and Lee, 2009
39

Example

t = 0 t = 100

Where should the ball be at ? What about ?t = 50 t = 10

Key configurations: and t = 0 t = 100

40

Linear Interpolation

Given a starting and ending target, we can change a value by a fixed
amount each timestep. This way, the change happens at a linear rate

(i.e. if we wait twice as long, the change is twice as large).

This is linear interpolation, sometimes nicknamed "lerp".

41

Linear Interpolation

t = 0 t = 100

x = 0

x = 5

42

Linear Interpolation in
Processing

43

Processing has a function called lerp()

Usage: lerp(v1, v2, t) where t is between 0 and 1

lerp(v , v , t) =1 2 v (1 −1 t) + v2(t)

Does not actually apply the lerp over time---you need to do that
yourself! This just tells you what the result should be.

44

An Example in Processing
float xBegin = 0.0;
float yBegin = 0.0;
float xEnd = 500.0;
float yEnd = 300.0;

float time = 0.0;
float timeEnd = 100.0;

float x = xBegin;
float y = yBegin;

void setup(){
 size(500, 500);
}

void draw(){
 time++;
 if(time > 100){
 noLoop();
 return;
 }
 ellipse(x, y, 50, 50);
 // How do we get the new x and y?

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 45

Uses for Lerp

46

Any time you want values "in-between" in a simple manner.

Michael Guerzhoy, UToronto, https://www.cs.toronto.edu/~guerzhoy/320/lec/upsampling.pdf

-1

0

1

1 2 3 4 5 6

User Berland on Wikipedia 47

https://commons.wikimedia.org/wiki/File:Interpolation_example_linear.svg

Cosine Interpolation
Linear Interpolation can have sharp discontinuities at each point. Cosine
interpolation can smooth these out without requiring more data points.

t =2 2
1−cos(πt)

v(t) = (1 − t)v +2 1 t v2 2

48

paulbourke.net

49

Hands-On: Interpolation
1. Create a global counter time which runs from 0.0 to 1.0 in increments

of 0.01. Increment time at the end of your draw() loop (and roll it back
over to 0.0 if it exceeds 1.0).

2. Use lerp() to move a shape between two points of your choosing in
your draw() loop. Use the global time you set up in step 2 to do the
interpolation.

3. Do the same thing as in step 3, but use lerpColor() to make the
shape change color smoothly as well.

4. OPTIONAL: Instead of making the counter roll over from 1.0 to 0.0,
make it smoothly oscillate between 0.0 an 1.0, back and forth. There are
several ways to do this, but one is to use 0.5 * (sin(time)+ 1) as
your lerp argument (since it is always in the range [0.0, 1.0])

50

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

51

