
GUIs and Event-Driven
Programs

1

Final project proposal due tomorrow at midnight.

Physical simulation project due Wednesday at midnight.

You are not required to write more than an quick
outline of your project. However:

1. Writing things down in detail acts as a focusing
lens for your thoughts.

2. If you write down some implementation ideas,
we can evaluate them and provide feedback.

2

Is there a time limit for the final presentation?

This will depend on group sizes in the class. We might be looking
at anything from a very strict 5 minute time limit to a setting

where almost nobody needs to watch time very closely.

What info can go in the slides if we're doing a demo?
Explain what you did! There are tons of small decisions

and other things to explain to someone who's never
looked at your project before.

For reference, I've seen engaging, interesting 7 minute

presentations on a 2D "throw a ball" simulator.

Also, look on Canvas for other requirements. 3

What other cellular automata exist?

In 1D, there are exactly 256 possible CAs that use neighbor information. Stephen
Wolfram has catalogued them in his book, "A New Kind of Science."

Rule 250 Rule 90

Rule 30 4

In 2D, we go from 256 possible automata to .1.3 × 10154

Very hard to categorize all of these, but many interesting behaviors.

5

Is "The Sims" just a giant Game of Life?

No, but....
6

What is the connection between Cellular Automata and AIs?

Automata (not cellular in nature) power most rule-based systems.

AIs in games tend to be one of two
systems, both discrete automata:

Behavior trees
Finite state machines

https://www.youtube.com/embed/6VBCXvfNlCM?
enablejsapi=1

For more general AIs, before the neural
network + backpropogation paradigm was

shown to be effective (ca. 2010), the
primary AI tools were automata-based.

7

https://www.youtube.com/embed/6VBCXvfNlCM?enablejsapi=1

Can CAs display fractals?
Not with infinite resolution, but yes.

In fact, some of the earliest graphics
programs were generated by slightly more

general CAs!

8

Debugging is Hard

Yes.

Debugging broken code is significantly harder than writing new
code. I have never heard a professional developer express an

opinion contrary to this.

It's even harder in graphics because certain parts of the "regular"
debugging cycle are much harder or even impossible to do, so
debugging broken graphics code can become very interesting.

9

Debugging

Observe a
problem.

Think of things that
could be causing this

problem. Try to observe parts of the
program that let you

distinguish between your
potential causes.

Fixed!
Apply change to
prevent issue.

Issue
disappears

Do we see something
consistent with our

potential cause?

Dang.

Yes.

No.

10

How not to Debug*

* You can do this a few times as a sort of quick-and-dirty debugging path. If it doesn't work 2 or 3 times, then STOP! Back up, take

a breath, and take it slow and steady.

1. See a problem.
2. "I wonder if it might be X."
3. Write a bunch of code that would fix X.
4. It doesn't work.
5. "I wonder if it might be Y..."

Do this too many times, and your
code is undebuggable!

11

Example

My Game of Life was not showing any
change in squares.

12

Other Tricks

def calculate(lst):
 total_i = 0
 total_e = 0
 for t in lst:
 if t['t'] == 'i':
 total_i += t['a']
 else:
 total_e -= t['a']
 return total_i - total_e

1
2
3
4
5
6
7
8
9

def total_income(transactions):
 income = 0
 for t in transactions:
 if t['type'] == 'income':
 income += t['amount']
 return income

def total_expenses(transactions):
 expenses = 0
 for t in transactions:
 if t['type'] == 'expense':
 expenses -= t['amount']
 return expenses

def calculate_net(transactions):
 income = total_income(transactions)
 expenses = total_expenses(transactions)
 income - expenses

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

13

Other Tricks
Good naming and commenting in your

functions can save you a lot of grief!
Structuring code into functions can allow you

to test things without suffering printspam.

void main(){
 // ...

 for(int i = 0; i < 100; i++){
 for(int j = 0; j < 100; j++){
 array[i * width + j] = array[i+1 * width + j] + 10;
 }
 }

 // ...
}

1
2
3
4
5
6
7
8
9

10
11

void main(){
 // ...

 for(int i = 0; i < 100; i++){
 for(int j = 0; j < 100; j++){
 float val = func(array, i+1, j);
 array[i * width + j] = val;
 }
 }
}

1
2
3
4
5
6
7
8
9

10 14

Other Tricks
When writing your code, do it as simply as you can.

If debugging is harder than writing, and you're using 100% of
your cleverness when writing the code, how are you ever going

to debug it when things inevitably go wrong?

NOTE: When you're still learning to program (as you are
now), there is a tendency to favor cool tricks over boring
code. This is fine (I would even argue that it is good) but
remember that this does make it harder to debug later.

15

But mostly...

It takes a lot of time and experience.

16

The Challenges of User-
Facing Programs

17

Do computation
When results are ready, show them to the user
User may optionally enter more input
Program processes user input when it is ready, then
carries out more computation

"Typical" Program

18

Program does things on its
schedule!

19

User-Facing Programs

Program usually sits around and does nothing until it needs
to respond to something.
Once external event occurs, program should respond to it as
quickly as possible.
Might need to process multiple events quickly

20

Typical Program Interactive Program

21

Events

22

Events

The things we need to respond to in our program are termed "events."

Events can be system-generated or user-generated, but are almost
always external to the program---we can't control when they happen.

When events occur, we execute code which alters the program state.
This is termed "event-driven programming."

Taken to the extreme, this creates a paradigm known as "reactive
programming."

23

Examples of Events

System-Generated

Hardware timer fires
File load completes
Network message
arrives

User-Generated

Keyboard press
Mouse movement/click
Shutdown initiated

24

Toolkits
Unless you plan to write your own user interfaces from scratch (not

recommended!), you'll likely be programming interfaces using an existing
toolkit.

These toolkits already know how to recognize most common
events, like mouse click, mouse drag, window close, etc.

The programmer is responsible for writing functions
that will be called when these events occur, and telling

the toolkit which functions to call on which events.

25

void mouseClick(){
 playPauseSound();
 displayMenu();
 pauseGame();
}

// Without being told to, the program does
// not know it needs to run mouseClick() on
// mouse click, so we tell it this in main()
void main(){
 GUI.registerHandler(ON_CLICK, mouseClick);
}

1
2
3
4
5
6
7
8
9

10
11
12

Callbacks
A common programming technique: we register a function to be

called when something happens. Example in fake-Processing:

26

GUIs

27

Short for "Graphical User Interface". An interface with a visual
component.

Designed for easier, more intuitive experience. Typically based on
event-driven programming.

Did you know you can browse the
web using only the keyboard? To the

left is the eLinks browser.
I'm glad I have Firefox.

28

Uses

I mean, honestly. What programs don't
have graphical interfaces these days?

Question: what are common interactable elements of GUIs?

29

Widgets
A general name given to interactable elements

within a GUI, including things like:

Buttons
Checkboxes
Sliders
Radio buttons

Give us different ways of interacting with program behavior
and configuring the program.

30

Buttons
Simplest form of widget. Allows for functionality on mouse click.
Buttons need to be aware of the mouse position and the button
boundary.

Circles check whether mouse is within button based on distance
from center.
Rectangles check based on width/height from corner or center.

31

Hands-On: Buttons
1. Implement a Button class. This class should have a method that

takes screen coordinates (as separate x, y parameters) and checks
whether the coordinates are within the button or not.

2. Create both rectangular and circular buttons, and place them in
nonoverlapping positions on the screen.

3. Add functionality so that the color of a button changes when it is
clicked.

You will extend the Button for today's second Hands-On.

32

Build Buttons

33

Check Boxes
A specialized button with an "on" and "off" state.
What do we need to store to track a checkbox?

34

Radio Buttons
A specialized version of checkboxes. Only one radio
button can be on at any given time---when one is set

to on, all others must be set to off.

Questions

What other data do radio buttons have to be aware of?
What data structures can help us organize the radio
buttons?

35

Scrollbars

Users can select based on a range of values
Minimum and maximum values correspond to the
ends of the slider
Thumb, or current position, controls the assigned
value
Allows for a “continuous” range of values

36

What value does this correspond to on a slider?

How about this one?

How about this one?

Does this seem like
something else we've
studied in this class?

37

Slider's value is determined by a linear
interpolation between the end position of the

slider.

0.0 * SLIDER_MAX

1.0 * SLIDER_MAX

0.75 * SLIDER_MAX
This also works for non-linear
sliders (like knobs) with some

modification.

38

Hands-On: More Widgets

1. Extend your button class to create checkboxes
2. Extend your button class to create radio buttons
3. Create a scrollbar that either updates the x/y position

along an image or updates the background color of a
sketch.

Pick two of the following to implement:

Make sure you demo them in your sketch.

39

Other GUI Libraries
Existing libraries for Processing can simplify the GUI

creation process.

Guido: framework for GUI component
creation
controlP5: provides GUI components
G4P: provides GUI components and builder

Sketches -> Import Library -> Add Library -> [name]

40

Index Cards!
1. Your name and EID.

2. One thing that you learned from class today. You are

allowed to say "nothing" if you didn't learn anything.

3. One question you have about something covered in
class today. You may not respond "nothing".

4. (Optional) Any other comments/questions/thoughts
about today's class.

41

